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Foreword

This volume contains the papers accepted for presentation at the Second International Workshop on
Multistrategy Learning (briefly, MSL-93), held in Harpers Ferry, WV, May 26-29, 1993. The
workshop was sponsored by the Office of Naval Research and organized by the Center for Artificial
Intelligence at George Mason University.

The papers represent research on multistrategy learning conducted at leading research laboratories in
the U.S. and other countries, such as Austria, Australia, Belgium, Germany, Italy, Japan,
Romania, Slovenia, Spain, and United Kingdom. The presence of participants from so many
countries is an indication of a truly international significance of the research in this area. To help the
reader capture the variety of research directions, papers have been grouped into five categories,
according to their primary theme: general issues, knowledge base refinement, cooperative
integration, multiple computational strategies, special topics and applications.

Since multistrategy learning is one of the newest directions in the study and development of systems
with learning capabilities, a brief explanation of its aims may be useful here. Research in this area
concerns the development of learning systems that employ two or more inferential and/or
computational strategies in a learning process. Though initial research had been primarily oriented
toward integrating different inferential strategies (i.e., different types of inference), more recent
research shows a trend to integrate also different computational strategies (i.e., different knowledge
representations and associated processing methods). These Proceedings reflect this trend by
including a section on methods for integrating such multiple computational strategies. Multistrategy
learning systems are of increasing research interest due to their potentially significant advantages
over monostrategy systems. Such systems can learn from a greater variety of inputs, with different
amounts of prior knowledge, and generate different kinds of knowledge. Consequently, they could
be useful for a wide range of practical problems. Since human learning is inherently multistrategy,
the research in this area is also of significant importance to the study of human learning, and has
opened new opportunities for a cross-fertilization of the two fields. Multistrategy learning
workshops serve as a forum for researchers to present and discuss their recent research in this new,
rapidly evolving and very challenging area.

We gratefully acknowledge the support from the Office of Naval Research, and express our special
thanks to Lt. Comm. Robert Powell, without whose interest and encouragement this Workshop
would not have happened.

We thank Dr. Su-Shing Chen and Dr. Andrew Sage who have honored the workshop with invited
presentations.

We also thank the many individuals who helped in the organization and conduct of the workshop.
The Program Committee members and the auxiliary reviewers provided careful and timely
reviews of the submitted papers. Their assistance was indispensable for insuring the high
quality of the contributions.

Michael Hieb, Nina Kaull, and Janusz Wnek were in charge of the local organization. They
diligently directed and executed many organizational aspects of the workshop.
The research assistants of the GMU Center for Artificial Intelligence, in particular, Jerzy Bala,
Eric Bloedom, Tomasz Dybala, Ibrahim Imam, Ken Kaufman, Mark Maloof, Alan Schultz, and
Haleh Vafaie, provided invaluable help in handling many technical and managerial details. They
are a great and reliable team, whose help cannot be overstated.

The Second International Workshop on Multistrategy Learning was the result of the enthusiastic
work and the contribution of all the people mentioned above. We sincerely thank everyone for their
help.

Ryszard S. Michalski and Gheorghe Tecuci
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Multitype Inference in Multistrategy
Task-adaptive Learning: Dynamic Interlaced Hierarchies

Michael R. Hieb and Ryszard S. Michalski
Center for Artificial Intelligence

George Mason University, Fairfax, VA
hieb@aic.gmu.edu and michalski@aic.gmu.edu

Abstract 1. Introduction

Research on multistrategy task-adaptive The development of multistrategy learning
learning aims at integrating all basic
inferential learning strategies-learning by systems requires a powerful and easily
deduction, induction and analogy. The modifiable knowledge representation that
implementation of such a learning system facilitates multitype inference. This is
requires a knowledge representation that particularly true in the case of multistrategy
facilitates performing a multitype inference in
a seamlessly integrated fashion. This paper
presents an approach to implementing such integrate a whole range of inferential strate-
multitype inference based on a novel gies, such as empirical induction, abduction,
knowledge representation, 'called Dynamic deduction, plausible deduction, abstraction,
Interlaced Hierarchies (DIH). DIIi integrates and analogy (Michalski, 1990, 1991; Tecuci
ideas from our research on cognitive modeling
of human plausible reasoning, the Inferential and Michalski, 1991; Tecuci, 1993). A MTL
Theory of Learning, and knowledge system adapts a strategy or a combination of
visualization. In DIH, knowledge is strategies to the learning task, defined by the
partitioned into a "static" part that represents available input knowledge, the learner's
relatively stable knowledge, and a "dynamic"
part that represents knowledge that changes background knowledge and the learning goal.
relatively frequently. The static part is A theoretical framework for the development
organized into type, part, or precedence of MTL systems has been presented in
hierarchies, while the dynamic part consists of (Michalski, 1993).
traces that link nodes of different hierarchies.
By modifying traces in different ways, the This paper presents basic ideas underlying a
system can perform different knowledge knowledge representation proposed for the
transmutations (patterns of inference), such as
generalization, abstraction, similization, and implementation of a MTL system and its use
their opposites, specialization, concretion and for implementing multitype inference. This
dissimilization, respectively, representation, called Dynamic Interlaced

Key words: multistrategy learning, Hierarchies (DIH), integrates ideas from our

inferential theory of learning, knowledge research on modeling human plausible
transmutation, generalization, abstraction, inference, the Inferential Theory of Learning
similization. and the visualization of knowledge. DIH
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encompasses many different forms of Michalski, 1990). The theory presents a
knowledge - facts, rules, dependencies, etc., formal representation of various plausible
and facilitates knowledge transmutations, inference patterns observed in human
described in the Inferential Theory of reasoning.
Learning (iTL) (Michalski, 1993). This paper DI is more fully described in (Hieb &
shows how DIH supports several basic Mihals 1993).
patterns of knowledge change (transmu- Michalski, 1993).
tations), such as generalization, abstraction,
similization, and their opposites, special- 2. Relevant Research
ization, concretion and dissimilization, TP
respectively. These operations are performed The core theory of Plausible Reasoning

on DIH traces, which correspond to well- presents a system that formalizes various

formed predicate logic expressions associated plausible inference patterns and "merit

with a degree of belief. parameters" that affect the certainty of these
inferences. This system combines structural

While our previous work has focused on the aspects of reasoning (determined by
visualization of attribute-based representations knowledge structures) with parametric aspects
for empirical induction (Wnek & Michalski, that represent quantitative -belief and other
1991), DIH allows the visualization of measures affecting the reasoning process.
structural (attributional and relational)strepturesenta tions. Theaundyng rlas tionais Various components of the "Logic of Plausiblerepresentations. The underlying assumption is Resng"hvbenipmntdnsvrathat the syntactic structure for representing Reasoning" have been implemented in several

tha th sytacic trctue fr rpreentng systems (Baker, Burstein & Collins, 1987;
any knowledge should reflect as closely as systes (Baker, Busti KClli, 1987;
possible the semantic relationships among the Tas &mZemakova 18e l 1988).
knowledge components, and facilitate knowl- the impemen tatis ed variouss e
edge modifications that correspond to the most oe inferenes t ate ts "
frequently performed inferences. An early described in the core theory to investigate the
implementation of this idea was in the parametric aspects of the theory. The imple-ADVISE system, which used three forms of mentations demonstrated how the core theory

ADVIE sste, wichuse thee orm of of plausible reasoning can be applied to
knowledge representation: relational tables, ofrplus reain g can be applied tnetork an rues(Michalski et al., 1986). various domains. DIN specifies a broader set
networks and rules (of knowledge transmutations in a general and
The DIH approach assumes that a large part of well-defined knowledge representation. These
human conceptual knowledge is organized transmutations are part of a framework for
into various hierarchies, primarily type, part both reasoning and learning.
and precedence hierarchies (see Section 3 foran explanation). Such hierarchies reflect The organization of concepts into various
frequentlyaoccurringcrelationships amongt hierarchies has been proposed as a plausiblefrequently occurring relationships among stuurfohmase niceoyqie
knowledge components, and make it easy to strur forhmn semant memory Teperform basic forms of inference, early (Collins & Quillian, 1972). The

WordNet project at Princeton University,
The initial idea for DIH stems from the core directed by George Miller, concerns the
theory of human plausible reasoning (Collins implementation of an electronic thesaurus
& Michalski, 1989; Boehm-Davis, Dontas & using such a memory structure (Beckwith et
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al., 1991). WordNet is a very large lexical usually be classified from several different
database with approximately 50,000 different viewpoints.
word forms. WordNet divides the lexicon into The design of semantic networks is primarily
various categories including nouns, verbs, and oriented toward facilitating deductive
modifiers (adjectives and adverbs). inference, and is not usually concerned with
Significantly, the nouns are stored in topical knowledge visualization. The design of DIH is
hierarchies (both type and part hierarchies), oriented toward facilitating multitype
lending support to the DIH representation. inference and providing a basis for the visual
However, while WordNet can be used as a presentation of knowledge. DIH also utilizes a
source of DII hierarchies, it does not provide hierarchy of merit parameters to represent
any inferential facilities. probabilistic factors associated with plausible

Other relevant research includes the reasoning.
development of the Common Knowledge
Representation Language (CKRL), done as 3. Basic Components of DIH
part of an ESPRIT project (Morik, Causse & The theory of plausible reasoning postulates
Boswell, 1991). CKRL offers a language in that there are recurring patterns of human
which knowledge can be exchanged between plausible inference. To adequately represent
machine learning tools and it uses the set of these patterns, one needs a proper knowledge
most common representation structures and representation. The DIH approach partitions
operators. While CKRL's representation for knowledge into a "static" part and "dynamic"
multistrategy learning seeks to integrate the part. The static part represents knowledge that
various representations employed by several is relatively stable (such as established
different learning programs f3r commu- hierarchies of concepts), and a "dynamic" part
nication of knowledge between the machine that represents knowledge that changes
learning tools, our aim is to develop a relatively frequently (such as statements
representation that facilitates an integration of representing new observations or results of
learning and inference processes. reasoning). The static part is organized into

Semantic network knowledge representation type hierarchies (TH), part hierarchies (PH)

systems, such as the KL-ONE family and precedence hierarchies. Precedence

(Brachman et al., 1991), utilize a large net- hierarchies include several subclasses, specif-

work of relationships between concepts, ically, measure hierarchies (MH), quantifi-

intermixing different relationships. The cation hierarchies (QH) and schema hierar-

hierarchies they use are tangled, in which a chies (SH). The dynamic part consists of

concept can have more than one parent. As a traces that represent knowledge involving

consequence, implementing knowledge trans- concepts from different hierarchies. Each trace
links nodes of two or more hierarchies and is

mutations, e.g., generalization, is not as easy

as in DIH. DIH facilitates such transmutations assigned a degree of belief.

because it uses only single-parent hierarchies, These hierarchies are composed of nodes
representing a structuring of a set of entities representing abstract or physical entities, and
from a certain viewpoint. In DIH, a concept links representing certain basic relationships
can belong to different hierarchies, reflecting among the entities, such as "type-of', "part-
the fact that a given concept (or object) can of' or "precedes". In the "pure" form, these



hierarchies are single parent, that is, no node hierarchy, in which leafs stand for values of
can have more than one parent. The root node some physical measurement, for example,
is assigned the name of the class of entities weight, length, width, etc., and the parent
that are organized into the hierarchy from a nodes are symbolic labels characterizing
given viewpoint, ranges of these values, such as "low",

A type (or generalization) hierarchy organizes "medium", "high", etc. Figure I shows a
concepts in a given class according to the measure hierarchy of possible values of
"type-of relation (also called a "general- people's height. Dotted lines indicate a
"typeon"or"knd-of" relation)(ao c d a nerampl-, continuity of values between nodes. Arrows
ization" or "kind-of" relation). For example, indicate the precedence order of the nodes.
different types of "animals" can be organized

intoa~tye" herarhy.Another subclass hierarchy is a belief
into a "type" hierarchy. hierarchy, in which nodes represent degrees of

A part hierarchy organizes entities according an agent's beliefs in some knowledge
to a "part-of' relationship. For example, the represented by a trace.
world, viewed as a system of continents, Other subclasses of precedence hierarchies
geographical regions, countries, etc., can be include a rank hierarchy and a quantification
organized into a part hierarchy. While proper- hierarchy. A rank hierarchy consists of values
ties of a parent node in the type hierarchy are representing the "rank" of an entity in some
inherited by children nodes, this does not structure, e.g., an administrative hierarchy or
necessarily hold for a part hierarchy. There are struture erg. anainisative hierarchyseveal iffeentpar reltioship, wich military hierarchy. A quantification hierarchy
several different part relationships, which consists of nodes that represent different
include part-component, part-member, part- quantifiers for a set (An example is shown in
location and part-substance (Winston, Chaffin Figure 2). A quantification hierarchy that is
and Herrmann, 1987). frequently used in commonsense reasoning

To represent relationships among elements of includes such nodes as "one", "some"
ordered or partially ordered sets, a class of (corresponding to the existential quantifier),
precedence hierarchies is introduced. Hier- "most", and "all" (corresponding to the
archies in this class represent hierarchical universal quantifier).
structures of concepts ordered according to Each hierarchy has a heading that specifies its
some precedence relation, such as "A precedes kind (TH, PH, MH, QH or SH) and the
B", "A is greater than B", "A has higher rank underlying concept (or viewpoint) used for the
than B", etc. creation of the hierarchy. In addition, the type

There are several subclasses of precedence and part hierarchies also have a top node that
hierarchies. One subclass is a measure in the type hierarchies stands for the class of

IM" Pefso's Height

Fiu4r 0': 4' 6' S'au 0hier 5 c5arac 6t e 6'6ng 7' 0" eiho.

Figure 1: A measure hierarchy of values characterizing people's height.
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all entities in the hierarchical structure, and in people rely primarily on the structural
the part hierarchies for the complete object. knowledge, and resort to parametric

knowledge when the "structural" reasoning
Schema hierarchies (or schema) are structures g

that indicate which hierarchies are connected does not produce a unique result. They resist
performing uncertain inferences based on only

in order to express multi-argument concepts or paramic knoetan they are n ood

relationships. For example, the schema parametric knowledge, and they are not good

hierarchy for the concept of "physical-object" at assigning a degree of certainty to a

can be <shape, size>. This states that an statement based only on the combination of

attribute 'shape" applies to any object that is a the certainties of its constituents, without
"'physical-object" (a node in the "physical- taking into consideration the meaning of the

object" hierarchy), and produces a shape whole sentence. A reason for this may be that

value, which is a node in the "shape" there does not exist a normative model forreaonin under unerais tha noeints"sae
hierarchy. The schema hierarchy for the reasoning under uncertainty that is
concept of "giving" may be <giver, receiver, independent of the structural aspects of

knowledge, i.e., its meaning. Plausible
object, time> that states that this concept reasoning about a problem or question
involves an agent that gives, an agent that typically involves both structural and
receives, an obje,..t that is being given, and the parametric knowledge components.
time when the "giving" occurs. The agents,
object and time are elements of their Nodes of a hierarchy are elementary units of
respective hierarchies. the DIH representation. Each node represents

DIH also makes a distinction between some real or abstract entity-a concept, an

structural and parametric knowledge. The object, a process, etc. A given entity can be a

structural knowledge is represented by node in multiple hierarchies, where each
hierarchies and traces that link nodes of hierarchy structures a set of entities from a
different hierarchies. Parametric knowledge different viewpoint. The relevant viewpoint is

differentnehierarchies.tearaoettceknowledgeep
consists of numeric quantities characterizing determined by the context of the discourse.

structural elements of knowledge. In DIH, this As mentioned earlier, the basic structures in
knowledge is represented via precedence the DIH representation are hierarchies, nodes,
hierarchies of merit parameters. The basic traces and schema. Our research on DIH
merit parameter is a belief measure that demonstrates that these structures provide a
characterizes the "truth" relationship of a very natural environment for performing basic
given component of knowledge representation types of inference on statements. The
(a trace), as estimated by the reasoning agent. subsequent sections show how these
Other merit parameters include the forward inferences are performed using the DIH
and backward strength of a dependency, representation.
frequency, dominance, etc. (Collins and
Michalski, 1989; Michalski, 1993). In this 4. DIH Traces
paper, we will consider only one merit
parameter, namely, the belief measure. To describe the DIH knowledge

representation, let us start by representing the
The theory of human plausible reasoning following statement: "It is certain that some
(Collins and Michalski, 1989) postulates that power plants in New York have mechanical
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p r plant /Ioe" lacatinn

(Charnicnite Statesoodan

Ne Y oe)i --alora.

The trace representing the sentence consists of nodes linked by dotted lines. The arrows in the
trace indicate the argument (reference set) that is being described by the sentence. The
interpretation of the trace is given by schema hierarchy SH1 in Figure 3.

Figure 2: A DIH trace representing the sentence "It is certain that some power plants in

New York have mechanical failures."

failures." Figure 2 presents this statement as a basis of the schema hierarchy shown in Figure
trace connecting nodes of five hierarchies: 3. The schema defines the universe of
"Process plants" and "Failure", both type sentences that can be generated using concepts
hierarchies; "Quantification", the quantifi- of these hierarchies, ordered according to the
cation hierarchy; "Location", a part hierarchy; schema.
and "Belief measure" a measure hierarchy.

The convention for the direction of arrows in a

ant- Proces 0t 1.

n erpranti o re dn e on thie rarc SoHion
intrpetaio ofthtrcFisguren 3: schema hierarchy SHL.nFgue3
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denoting descriptive concepts to the argument and the reference set of the trace. Since the
node that stands for the set (or individual) schema hierarchy is a precedence hierarchy, a
being described, called a reference set. In this valid interpretation of the schema requires
example, the set being described is "Power each of the descriptors in order. Thus the first
plant" in the hierarchy of Process Plants, thus element of the trace must be from the
the node representing it is the argument node. quantification hierarchy, the second from the
Other nodes linked by the trace represent failure hierarchy, the third from the location
descriptive concepts for the argument node. hierarchy and the last from the hierarchy of
The belief measure takes values from a belief belief measures. This schema hierarchy is also
hierarchy, and refers to the entire trace rather utilized for examples in Section 4.
than a single node, which is indicated by the
schema. Adding knowledge to the DIH representation

is done by creating hierarchies and specifying
Using the formalism of the annotated traces that express statements involving nodes
predicate logic (Michalski, 1983), this trace of different hierarchies. To allow proper
can be interpreted as: "(Some)x, [type(x) = interpretation of a trace, the schema is also
Power plant) & [location(x) = New York] & specified by indicating relevant descriptors
[failure(x) = mechanical]: Belief = 1.0." This and their order.
statement is a quantified conjunction of
several elementary statements. An elementary DIH allows one to represent complex forms of
statement expresses or.e property of the knowledge, involving different kinds of
reference node (set), for example, quantifiers, multi-argument predicates,
"Location(Power plant) = New York." different types of logical operations on them,

and to associate degrees of belief withIn a formal expression of an elementary individual statements. A more complete

statement, the reference set ("Power plant") is dipion ofathentIH re restonpsyte
description of the DIH representation system

called an argument, the predicate ("Location") i g
is called a descriptor, and the value of the is given in (Hieb & Michalski, 1993).

descriptor ("New York") is called the referent.
Thus, an elementary statement is formally 5. Multitype Inference in DIH
expressed in the form "descriptor(argument) = The core theory of plausible reasoning
referent". introduced in (Collins & Michalski, 1989)

In Figure 2, the square boxes contain the gives four knowledge transmutation operators

heading of the hierarchy. The concept (also called transforms) - generalization,

specified in the heading is the general specialization, similization and dissim-

descriptor for the hierarchy. The nodes in the ilization. The Inferential Theory of Learning

hierarchy are possible values of this (Michalski, 1993) specifies several additional

descriptor, operators, of which abstraction and concretion
are incorporated into DIH. (In (Collins and

The schema hierarchy, SH1, in Figure 3 is Michalski, 1989), the abstraction and
used for the interpretation of the trace concretion transmutations were called referent
represented in Figure 2. The heading indicates generalization and referent specialization,
the type of hierarchy (SH: Schema Hierarchy) respectively.)
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Transmutation Symbol Relevant Hierarchies Inference Type

Argument Generalization AGen Type, Part Deductive
Argument Specialization ASpw Type, Part Inductive
Quantification Generalization OGen Quantification Inductive
Quantification Specialization QSpec Quantification Deductive
Abstraction Abs Type, Part, Precedence Deductive
Concretion Con Type, Part, Precedence Inductive
Argument Similization ASim Type, Part Analogical
Argument Dismili•Ation ADis Type, Part Analogical
Referent Similization RSim Type, Part, Precedence Analogical
Referent Dissimilization RDis Type, Part, Precedence Analogical

Table 1: Basic knowledge generation transmutations.

Generalization (specialization) transmutations These transmutations can be given a simple
extend (contract) the reference set. They are conceptual interpretation, if one assumes that
done either by argument generalization nodes at each level of hierarchy are ordered by
(specialization) or by quantification the relation of similarity, that is, nodes that
generalization (specialization). Argument correspond to similar concepts (in the context
generalization is accomplished by moving of the given hierarchy) are located near each
above the node representing the reference set other, and nodes that correspond to dissimilar
in a type hierarchy. Quantification gener- concepts are placed far away from each other.
alization is accomplished by moving up the Such an arrangement is natural for precedence
quantification hierarchy. hierarchies. In sum, similization and

dissimilization transmutations are performed
Abstraction (concretion)utransmutations by sideways node movements, while
decrease (increase) the amount of information generalization (specialization) and abstraction
about the reference set. A way to accomplish (concretion) are performed by upward
such a transmutation is by moving above the (downward) node movements.
node in the type or part hierarchy that
corresponds to a value of some descriptor in Table 1 lists all the above knowledge
the sentence represented by the trace. transmutations, specifying their abbreviated

name, the relevant hierarchies, and the
Similization (dissimilization) transmutation is underlying inference type. The relevant
done by replacing a node corresponding to the hierarchies are the kinds of hierarchies for
reference set (argument) or a descriptor value which the transmutations are valid. The
(referent) by a node at the same level of various kinds of part hierarchies are not
hierarchy, which corresponds to a similar shown, but are distinguished in DIH.
(dissimilar) concept within the context of the Additional constraints are necessary in some
given hierarchy. In the case of dissimilization, kinds of part hierarchies to maintain the
the resulting trace is linked with a negation validity of the transmutation.
node, because the generated inference is a
negation of the original sentence (Michalski, Figure 4 presents a schematic diagram
1993). illustrating how knowledge transmutations
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modify a trace. A dotted line represents a link same truth status as the original trace. In the
in a trace. An arrow means that the trace is case of node movement that corresponds to
moving to a new node in the indicated inductive or analogical inference, the smaller
direction by performing the indicated the node movement ("perturbation"), the more
transmutation. The quantification transmuta- plausible the resulting inference.
tions operate over the entire trace, rather than
on a single node, as do the transformations The Argument Generalization transmutation

involving the merit parameters. represents a deductive inference. The
abstraction operation is also deductive. In

One form of generalization transmutation contrast, Argument Specialization, Quan-
moves a node in the quantification hierarchy tification generalization and Concretion are
upward, another form moves a node inductive, because they produce traces
(argument) in the type hierarchy upward. The (statements) that logically entail the original
"+" indicates a strengthening of a merit traces (statements).
parameter, or the movement of the link to a
node that is "higher" in the particular merit The above transmutations can be usually done
parameter measure hierarchy. The "r" in a number of different ways, by moving toparaetermeaure ierachy The"-" different alternative nodes. The plausibility of
indicates a weakening of the merit parameter, dferenerate no s T eplaus of
or the movement of the link down in the the generated statements depends on
hierarchy. additional merit parameters, such as

dominance, typicality, multiplicity, similarity,
Moving a node in a trace in a manner that frequency, etc. (Collins and Michalski, 1989).
corresponds to a deductive inference (Table 1) These issues will be the subject of future
produces a new trace (statement) with the research.

7 ! AGen D Abs +

4 4-- -• --- •17- -:. >
tA-ibm MPQ ASm4 ASIm RSimr RSim

ASpec Con

A argument (the set being described; the reference set)
R referent (value of the descriptor characterizing the argument)
D descriptor (relationship characterizing the argument)
Q quantification
MP one or more of the merit parameters

- a alikin a trace
- moving a node in the direction of the arrow performs the indicated transmutation

Figure 4: Diagram of knowledge transmutations in DIH.
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6. Visualizing DIH-Based Inference in Figure 3.

This section illustrates several basic There are two referents in the input statement.
transmutations through a series of self- The resulting statements (output) show the

explanatory examples. These examples results of the given transmutation assuming

involve the same original statement, rep- that there are no merit parameters that assist in

resented as a trace in Figure 2. Given the the specialization or concretion and that the

original statement, these transmutations similization operator finds a single "most

generate new statements illustrated by DIH similar" node using the descriptors given. The

traces in Figures 5 through 12. Background Knowledge (BK) is the learner's
prior knowledge that is relevant to the learning

- - ----- ---- t to T ti process.

...................... -, OuWa frm Trummui7MSan

Dirction of Trmnmutation 7. MTL-DIH System

The research on DIH aims at a,_ ping a
The legend above is used for interpreting the representation that will facilitate all basic
following figures. The input statement is the inferential strategies and knowledge
same as that of Figure 2, without the belief transmutations to be implemented in the
measure hierarchy. All of the examples are in- multistrategy task-adaptive learning system
terpreted according to the schema SH I shown (MTL-DIH).

Input: Some power plants in New York have mechanical failures
BK: Indicated hierarchies
Output: All power plants in New York have mechanical failures

T °Process ftnt I4°uatem

.................t............... ......................

-

Figure 5: Inductive generalization based on quantification.



13

Input: Some power plants in New York have mechanical failures
BK* Irdicated Hierarchies
Output: One power plant in New York has a mechanical failure

Fiur : edciv peiaiato base on queantifton .

Input: Somepowe r plant siNeYokhvmeanclflus

BK:n Innitaed Hitatehie

Outut Somet proess plants Now Newk Ywkhvamcaialfiue

Figure 7: Deductive gpeneralization based on qatheicargumnt.
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binp: Some power plants in New York have mechanical failures
RIC .niae esradn
Output: Some Nuclear power plants in New York have mechanical failures

Inut Smepoe p lalanNetYs hv mechaica catiure

BK:ica pl nt iae pleantie

Output: pSome powrpansiaNwYrkhvtfiue

Fiur 9:a Abrato trasm tation. "
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Input: Some power plants in New York have mechanical failures
BK!Inv-t Hierarchies
Output: Some power plants in New York have component defects

Cop ter CPoctness Lack of kblcatian

Fiur 10Ponrlinaanmtain

Inpu:Pomer poeplants in Ne YokhvehncLofatiure

BK~~~nie States Herrci

OututSoelhemca plants inONe York hvmeancalffarirs

Figure 11: Argumentsmlztion transmutation.
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JnPw: Some power plants in New York have mechanical faile~s
BK: ]fs Hirmuehi•
Output: Some power plants in California have mechanical failures

TN - Pms plan"

Figure 12: Referent similization transmutation.

Although issues related to the implementation learner's prior knowledge that is relevant to
of an MTL system are beyond the scope of the input and the learning goal.
this paper, we will briefly outline the basic

ideas. We have been pursuing two approaches, charactenizing knowledge to be learned. There

MTL-J, R wFood bupsa ui lejsiiantio

MTL-T, hic buids plusile jstiicaion are different kinds of learning goals, such as to
tree to "understand" a user's input (Tecuci, predict new information, to explain the input,

1993), ~~~~ ~PH an aseod ne TLDIbaed

anto classify a fact or concept instance, to reate
DIHI. an abstract description from an operational

In the MTL-DIH approach, a learning strategyioneo nerseli o create a rblemasolto
is determined by analyzing the learning ofk. or a plan. It is assumed that the learning goal

thipaerweillbriflyoutinetheba ic Thetlearnined byoal spchiofbies criteria

This analysis relates the input information to i eemndb ece rb h otothe learner's background knowledge and the module of the system.

learning goal. The input information to the The learning process involves determining the
system is assumed to be given in the form of type of relationship between the given input
logic statements. It can be concept examples, and the background knowledge, and
concept descriptions, rule examples, rules or a performing a sequence of knowledge
combination of the above. The system re- transmutations, involving input and
represents the input as a trace, or set of traces. background knowledge, to produce knowledge
Background knowledge is the part of the satisfying the learning goal.
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8. Summary and Future Research explain input statements. DIH is an efficient,
representation, because most knowledge

The DIr knowledge representation presented modifications consist of forming or changing
serves as the basis for implementing traces, without affecting the established
multistrategy task-adaptive learning. It builds hierarchies.
upon ideas of the Inferential Theory of
Learning and the core theory of plausible Many issues remain to be addressed in future
reasoning. Although it is closely related to the research. Among these issues are the
semantic network representation, it represents representation of more complex forms of
a significantly different approach, and knowledge-mutual implications, various-
contains many new ideas that make itcontainsumany nsewul ireasentha maeit types of dependencies, temporal and spatial
particularly useful for representing multitype knowledge, and the development of methods
inference. These include the idea of dividing for determining the affect of merit parameters
the knowledge representation into a static part on the reasoning process.
and a dynamic part, the organization of
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Abstract to solve is similar to an example, then deliber-
ate over whether to refer to the example or to

When solving homework exercises, human stu- solve the problem without its aid. As one of
dents often notice that the problem they are our subjects said, "this looks very much like the
about to solve is similar to an example. They one I had in the examples. Okay. Should I just
then deliberate over whether to refer to the ex- go right to the problem, which I distinctly re-
ample or to solve the problem without looking at member? Or should I try to do it without look-
the example. We present protocol analyses show- ing at the example?" A multistrategy machine
ing that effective human learners prefer not to learning program could face the same decision.
use analogical problem solving for achieving the The objective of this paper is to find out what
base-level goals of the problem, although they do heuristics good human learners use for deciding
use it occasionally for achieving meta-level goals, whether to do analogical problem solving, then
such as checking solutions or resolving certain determine when those heuristics would be good
kinds of impasses. On the other hand, ineffec- for a machine learning program to use.
tive learners use analogical problem solving in Because we use protocol data, the only evi-
place of ordinary problem solving, and this pre- dence we have of analogical problem solving is
vents them from discovering gaps in their domain episodes where a person explicitly refers to an ex-
theory. An analysis of the task domain (college ample, typically by flipping pages in a textbook
physics) reveals a testable heuristic for when to in order to expose the page on which the exam-
use analogy and when to avoid it. The heuristic ple is printed. Thus, analogical problem solving,
may be of use in guiding multistrategy learners, in this paper, means the process of referring to a

written example rather than a mentally held one.
Keywords: incomplete theories, human skill As will be seen later, nothing in our conclusions
acquisition, multistrategy learning, protocol relies on this restriction, so the results may ap-
analysis. ply to analogies that- refer to mental examples

(or cases?) as well as written ones.

The protocol data come from subjects learn-
1 When To Use Analogical ing Newtonian physics. The subjects worked

Problem Solving? with textbook physics problems and examples,
such as the one in figure 1. The protocol data

When doing homework exercises, human learn- were collected as part of a study by Chi, Bassok,
ers often notice that the problem they are about Lewis, Reimann & Glaser (1989). The subjects



Problem: The figure on the left below shows a block of mass m kept at rest on a smooth plane,
inclined at an angle of 45 degrees with the horizontal, by measn of a string attached to the verti-

cal wall. What are the magnitudes of the forces acting on the block?

N T

45 45

ms

Solution:
(1) We choose the block as the body.
(2) The forces acting on the block are shown in the free-body diagram on the right.
(3) Since the block is unaccelerated, we obtain T+N+mg=O. J
(4) It is convenient to choose the x-axis of our reference frame to be along the incline and

the y-axis to be normal to the incline.
(5) With this choice of coordinates, only one force, mg, must be resolved into components.
(6) The two scalar equations obtained by resolving mg along the x- and y-axes are:

T -mg sin 45 = 0 and N -mg cos 45 = 0.
(7) From these equations, T and N can be obtained if m is given.

Figure 1: A physics example, with line numbers added

were 9 college students selected to have similar nique pioneered by Chi et al. (1989). The basic
backgrounds (Chi & VanLehn, 1991). The sub- idea is to split the subjects into two groups-
jects first refreshed their mathematical knowl- effective learners and ineffective learners-then
edge by studying the first 4 chapters of Halliday determine what the effective learners did differ-
& Rlesnick (1981), a popular physics textbook. ently from the ineffective learners. Because the
They then studied the expository part of chapter students were trained to have the same prereq-
5, which introduces the basic principles of New- uisite knowledge, the scores on their problem
tonian mechanics, its history and some classic ex- solving reflect their learning rate during exam-
periments. Student were tested at this point and ple studying and problem solving. The 4 highest
had to re-study parts of the material that they scoring subjects constitute the effective learners
did not understand. After they had mastered the (called Good solvers by Chi et al.), and the 4
mathematical prerequisites and the basic prin- lowest scoring subjects constituted the ineffec-
ciples, they studied 3 examples and solved 19 tive learners (called Poor solvers). The middle
problems while talking aloud. They were allowed subject's protocol was not analyzed (until later:
to refer to the examples at any time while solv- see below).
ing problems, but they were not allowed to refer
to their own previous problem solutions. The 9 The next section presents a learning mecha-
subjects' protocols, which averaged 5 hours each, nism and argues that it is the main source of
are the raw data for the findings reported here. learning by subjects in this study. The argu-
They contain many instances of analogical prob- ment uses new protocol analyses as well as anal-
lem solving. The goal is to discover which ones yses published earlier. With this as background,
helped learning and which ones hurt it. the subsequent sections present the main result,

which is that effective learners use analogical
We used a contrastive protocol analysis tech- problem solving sparingly. A discussion section
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speculates on why this policy was better for hu- Table 1: Mean errors per subject for each error
man solvers in this experiment, and suggests con-
ditions under which this policy would be good for category
any multi-strategy learner. Error type Good Poor

Inappropriate analogies 1.00 2.25

2 Gap Filling Gap errors **0.25 **7.75
Schema selection 0.50 1.75

Given that errors are used to determine when Math errors 0.25 0.75
learning was not effective, a direct way to un- Miscellaneous errors 1.25 1.75
cover dominant learning mechanisms is to exam- Totals **3.25 **14.25
ine the subjects' errors. If errors of a certain
type are much less common among Good solvers
than Poor solvers, we can assume that a learn-ing mechanism employed by the Good solvers quantities might be present. On some prob-
and not memployedby the Poor solvers isreducilems, subjects chose the equation-chainingand not the Poor solvers is reducing those er- s h m n t a ft ef r e s h m ,a d t ischema instead of the force schema, and this
rors. From the characteristics of such errors we caused them to answer the problem incor-
can infer the characteristics of the learning pro-
cesses. We classified errors into 5 types, which rectly.
are listed below: @ Mathematical errors. A typical mathemati-

"* Inappropriate analogies. Sometimes sub- cal error was to confuse sine and cosine, or

jects fetched an example that was inappro- to drop a negative sign.

priate for the problem being solved. At e Miscellaneous errors.
other times, stubjects fetched appropriate
examples but applied them in inappropri- The error classification was done separately by
ate ways. Both types )f errors are classified two coders, with an intercoder reliability of 82%.
as inappropriate analogies. P.ifferences were reconciled by collaborative pro-

"tocol analysis.
ofGap errors. Subjects often lacked a piece Table 1 shows the average number of errors
of physics knowledge, such as the fact that of each type per subject. Although the Good
the tension in a string is equal to the mag- solvers had fewer errors than the Poor solvers
nitude of a tension force exerted by that in every category, the difference was significant
string. Sometimes errors would occur when only for gap errors (t(6) = 5.36,p < .01). More-
the subject reached an impasse caused by over, the difference was quite large (3.8 standard
their lack of knowledge, and used some in- deviations), and accounts for most (68%) of the
effective repair strategy (VanLehn, 1990) to difference in the total error rates of the Good
work around it. At other times, the gap and Poor solvers.
would cause an error (such as a missing mi- These results suggest that Good solvers were
nis sign) without the subject ever becoming more effective learners than Poor solvers because
aware of the gap. they employed some kind of learning process that

" Schema selection errors. All subjects knew filled in the gaps in their knowledge.' There are

several methods or schemas for solving many kinds of mechanisms in the literature that

physics problems. One method was to 'An alternative explanation is that the Good solvers
draw forces, generate equations and solve never had the gaps because they learned the knowledge
the equations. Another method was sim- before studying the examples. Analyses of pre-test data

ply to generate equations that contained (Chi et al., 1989), the instructional material (VanLehn,
Jones & Chi, 1991) and the subjects' backgrounds (Chi

the sought and/or known quantities without & VanLehn, 1991) fail to support this interpretation of

considering what forces or other physical the data.
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can detect and rectify incomplete domain the- the knowledge that a compressed spring exerts a
ories. For handy reference, let us refer to the force on the objects at its ends, so it reaches an
process(es) that Good solvers use as gap filling impasse. The overly general rule applies, because
even though we do not know what it is. Table 1 Cascade knows that springs push back when you
suggests that gap filling is the main learning pro- push on them. The overly general rule justi-
cess that differentiates effective from ineffective fies creating an instance of a scientific concept
learners in this study. ("force") because it involves the same objects as

This suggestion is consistent with findings an instance of a lay concept ("push back"). As
from Chi et al.'s (1989) analysis of the same a side-effect of the application of this overly gen-
data. They found that during example studying, era] knowledge, a new domain rule is proposed:
Good solvers tended to thoroughly explain the If a block rests on a spring, the spring'exerts
examples to themselves, while the Poor solvers a force on it. If this rule is used successfully
tended to read them rather casually. Further enough times, it becomes a full-fledged member
examination of the protocols suggested that self- of the domain theory. In this fashion, Cascade
explanation consisted of actually rederiving the fills gaps in its domain knowledge.
lines of the solution (VanLehn, Jones & Chi, Cascade's behavior compares well with both
1991). If the main learning process is gap fill- aggregate findings (VanLehn, Jones & Chi, 1991)
ing, then this method of studying the example and individual protocols (VanLehn & Jones,
should cause the subjects to detect gaps in their 1993). This establishes that with plausible
knowledge. If a piece of physics knowledge is assumptions about subjects' prior knowledge,
required for deriving a line of the example's so- there is enough information present in the en-
lution, and students lack that knowledge, then vironment to allow a gap filling process to learn
they will be unable to fully explain the line. The everything that the Good solvers learn, to do
resulting impasse might cause them to seek the so without implausibly large computations, and
missing knowledge and fill their gap. Thus, the to generate outward behavior that is similar to
gap-filling hypothesis is consistent with the find- the subjects' behavior. In short, gap filling is a
ing that Good solvers self-explain examples more computationally sufficient account for the Good
than Poor solvers. Moreover, it explains why solvers' learning.
self-explanation causes better learning (VanLehn None of the results show that gap filling is the
& Jones, in press-b). only learning process going on. There rould be

The computational sufficiency of gap-filling others as we1 . However, Table 1 suggsts that
has been tested -by implementing simulation of gap filling is the most important learning pro-
human learning, called Cascade, that is based a cess, because it accounts for most of the dif-
particular gap filling mechanism and comparing ference in the learning of the Good and Poor
Cascade's behavior to the protocols (VanLehn, solvers.
Jones & Chi, 1991; VanLehn & Jones, 1991; in
press-a). Gaps can cause Cascade to reach im-
passes (i.e., be unable to achieve a goal) while 3 Avoiding Analogical Prob-
trying to solve problems or rederive examples. lem Solving
When Cascade's "official" domain knowledge is
insufficient to achieve a goal, it tries to apply There is already some evidence that the Good
overly general knowledge that captures regular- solvers avoid analogical problem solving. This
ities common to many types of scientific and section reviews those findings, then tries to as-
mathematical problem solving. For instance, one certain whether this is a just a correlation or
overly general rule is that scientific concepts of- whether avoiding analogy actually causes more
ten correspond roughly to common sense con- effective learning.
cepts. Cascade uses this rule during a problem Chi et al. (1989) counted episodes of analogi-
where a block rests on a spring. Cascade lacks cal problem solving during the first 3 problems.
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They found that Good solvers used analogy only quent among the 196 impasse-driven analogies.
2.7 times per problem, whereas the Poor solvers Upon reflection, it occurred to us maybe some
used analogy 6.7 items per problem. Thus, the of these supposedly impasse-driven analogies
Good solver use analogical problem solving less were not actually caused by trying to generate
often than the Poor solvers. Chi et al. also found forces, failing, and reaching an impasse. If this
that the Good solvers used analogy in a more fo- were the case, then one would expect the anal-
cused way. When the Good solvers referred to an ogy to yield new knowledge about the missing
example, they tended to jump into the middle of force (or whatever the missing knowledge was),
it and read only a few lines (1.6 lines per episode, thus filling the gap and allowing the person to
on average). The Poor solvers tended to start at draw their own force diagram the next time it
the beginning of the example and read the whole was needed. We examined all 196 cases of anal-
thing or until they found something they could ogy and found no cases were this kind of learn-
use (13.0 lines per episode). This suggests that ing occurred. If a person had an gap that caused
Good solvers are basically solving the problem an impasse-driven analogy, then they would use
on their own, but they occasionally use analog- analogy on every subsequent occasion (if any)
ical problem solving to get specific information when that piece of knowledge was required. It
from the example. The Poor solvers, on the other could be that what people learn from such an
hand, seem to use analogical problem solving in- impasse is that "analogy works here," so they
stead of regular problem solving. These findings continue to use it. However, it could also be
indicate a correlation between effective learning that our modeling was incorrect, and they never
and avoiding of analogy, but it is not clear which had such any impasses for that gap. Instead,
way the causality runs. when they go to certain sections of the prob-

Our first hypothesis was that the Poor solvers lem (typically, the force diagram), they would
used more analogical problem solving because use analogy without ever considering using their
they lacked domain knowledge so they had to domain knowledge. Perhaps some of those 196
refer to the example if they were to make any cases of impasse-driven analogy were really op-
progress. Cascade embedded this hypothesis. It tional analogies. Indeed, two of the subject never
did analogy (called transformational analogy in tried o draw a force diagram on their own-they
earlier reports) only when it reached an impasse always copied an example's diagram.
(VanLehn, Chi & Jones, 1991; VanLehn & Jones, While investigating the gap-filling hypothesis,
in press-a). On this account, the Chi et al. corre- we discovered additional support for this con-
lation is due to ineffective learning causing anal- jecture. According to the gap-filling hypothesis,
ogy. gaps in the textbook become gaps in the stu-

However, when we fitted Cascade to individ- dent's domain knowledge, which cause errors un-
ual protocols, we found that we sometimes had til they are detected and remedied. In order to
to force it to do analogy even though it had the check this story, we carefully analyzed the first 5
knowledge to do regular problem solving (Van- chapters of Halliday and Resnick (1981) and dis-
Lehn & Jones, 1993). While simulating all 9 sub- covered 9 pieces of knowledge that are required
jects, Cascade used analogy 231 times, and 196 by the problems and are not in the text (Van-
of these were caused by impasses while 35 (15%) Lehn & Jones, in preparation). Using Cascade,
were caused by our intervention. If we believe for each of the 9 subjects, we located the places
the modeling, then these 35 analogies were "op- in the protocols where the 9 pieces of knowledge
tional" in that the subjects did not have to do could appear if they were known, or cause er-
them. They could have used their knowledge rors if they were unknown. For each of the 9
of physics principles instead. In most of these pieces of knowledge, we created a chart, such
cases (30 of 35), the subjects copied the exam- as the one shown in Table 2, that summarizes
ple's force diagram rather than generate their what happened at each possible occurrence of
own. Copying the force diagram was also fre- the gap. The particular piece of knowledge ref-
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erenced by Table 2 is "Projecting a vector onto VanLehn, Jones & Chi 1991), took several
the negative portion of an axis yields a negative garden paths before discovering the correct
formula." This piece of knowledge is relevant rule for explaining the minus sign, which
5 times during example studying and 16 times is clear evidence of her lack of knowledge.
during problem solving. At each place, for each However, her verbal behavior at the time of
subject, we classified the protocol fragment into the discovery was just as brief and cryptic
one of the categories shown below (the symbol as the verbal behavior of P2 and 5102. Such
in parentheses corresponds to the code used in limited verbal evidence is typical of discov-
Table 2). ery events in protocol data (VanLehn, 1991;

Siegler & Jenkins, 1989). They nonetheless
"* (E) The subject omited use of the knowl- seem to reliably mark transitions in tife sub-

edge, which resulted in an error. jects' knowledge.

" (0) The subject omited use of the knowl- * (R) The subjects' verbal behavior indicates
edge, but no error occurred. For instance, that they are learning the piece of knowl-
one sign error might compensate for an- edge, but they used it at least one before.
other. We believe these are cases of relearning.

" (blank) During example studying, the sub- * (?) Protocol missing.
ject did not explain •.he part of the exam-plect whee nthisxpainhee art of knowlege w e The blanks in the problem solving part of Ta-

g uldbje ble 2 shows that for this piece of knowledge,
used. During problem solving, the s many gaps are not detected because the student
used analogical problem solving to avoid the used analogical problem solving. When we con-
line of reasoning that would use the piece of structed similar analyses for all 9 gaps and all 9
knowledge. subjects, we found that of the 81 (= 9x9) cases

" (U) The subject used the piece of knowledge where a piece of knowledge could be learned, in
without hesitation or other signs of unusual 44 cases (54%) the subject avoided all places
processing. where the gap could be detected (as did S109

in Table 2). This analysis clearly indicates that
" (L) The subject seemed to learn the knowl- analogical problem solving is thwarting gap fill-

edge. Episodes received this code if the sub- ing by avoiding lines of reasoning that would
jects expressed puzzlement or commented cause the gap to be detected.
on their lack of knowledge, but eventually This finding makes intuitive sense. Most prob-
came up with the right action (e.g., writ- lems can be solved by a 4 step process: select
ing a negative sign). For instance, subject some objects as the "bodies" (line 1 of Figure 1),
P2 overlooked the first minus sign in the draw a diagram for each body showing the forces
first example, but on the second minus sign acting on it (lines 2 and 3 of Figure 1), produce
she said, "Hmm, why is [it] minus? Uah a set of equations (line 6 of Figure 1), then solve
Huh.... Because these axis are starting here the equations for the sought quantity (omitted
so this is minus." She then went back to the in Figure 1). The last step cannot usually be re-
first minus sign and said, "How about the placed by analogy because the problems seldom
X's. It should also be a minus. Yah, that seek the same quantities. However, the first 3
was a minus." Subject S102 paused after steps can often be achieved by analogy. The stu-
seeing the second minus and said, "Negative dent can find an analogous problem and copy
W.... It's because it's going in a negative either its force diagram, its equations or both.
direction it points... they give it a negative A student who does this avoids using the force
value [if] it's below the Y-axis. I mean the laws (which generate forces) and Newton's laws
X-axis." Subject P1 (quoted at length in (which generate the equations). Missing physics
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Table 2: Places where the negative-projection rule could be used
Subj. Examples Problems

1 2 3 4 5 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
P2 L U ? ? U U U U U U U U U U U U U U
SI01 L L O U U U
P1 L L U 0 U U U U U U U U U U U
silo 0 U 0 0 U 0 U R
S102 L U U U O U
S109
S105 U U U U U U E,
S103 E 0 E
S107 U E R U U U 0 U

knowledge can remain undetected as long as one analogy can assist gap filling in several ways. To
uses analogy to copy force diagrams and equa- illustrate this, each of the 4 cases will be pre-
tions. To put it bluntly, analogical problem solv- sented.
ing often preserves ignorance. In one case, subject P2 reached an impasse

We can now understand part of Chi et al.'s and filled it with the aid of analogy. The subject
finding about t-he use of analogy by Good and was given a problem where water in a tube sup-
Poor solvers. The Poor solvers displayed more ported a block and kept it from falling. The sub-
episodes of analogical problem solving and read ject quickly recognized that this problem is simi-
more lines during each episode because they gen- lar an example where a block hung from a string
erally avoided generating their own forces and which prevented it from falling. However, she did
equations by copying them from the examples. not refer to the example but instead went to work
This is not just a coincidence, but seems to have on the problem by drawing its forces. Eventually
caused them to learn much less than they would she realized that she needed to know whether the
otherwise. On the other hand, the Good solvers water exerted a force on the block. (The text-
generally tried to generate their own forces and book had never mentioned pressure forces, and
equations and only referred sporadically and the subject never used the word "pressure," so
briefly to the examples. Thus, they could still apparently she lacked knowledge of this kind of
detect their gaps and remedy them. force.) She thought that there might be a force

analogous to the tension force in the string, but
4 Using Analogy Sparingly she wasn't sure. At this point she referred to

the example, presumably in order to ascertain

We suspect that the Good solvers' use of analogy its similarity to the problem. She eventually de-

does more than just allow gap-filling to operate. cided that it was okay to assume a force anal-

It may actively aid gap-filling by helping to both ogous to the tension force. This seems to be a

detect and fill gaps. This section presents a few case of an analogy assisting in the formulation of
pieces of protocol data to support our conjecture. a new physics conjecture that both filled a gap in
pwees , mthe subject's knowledge and resolved a problem
However, more data are dlearly required.

There were 6 cases in the protocols where, ac- solving impasse. ACT* (Anderson, 1990) and
other theories claim that analogy is often used tocording to the analysis above, knowledge wasrso

learned during problem solving. During 4 of the ye impasses and thereby acquire new knowl-

6 episodes, the subject clearly referred to an ex- edge.

ample. Although there are only 4 cases, they are In another case, subject S105 generated forces
different enough that they begin to show that for a problem without referring to any exam-
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ples. However, he failed to draw one force (the but not the best one for learning this rule). A
surface normal-a notoriously unintuitive force). bit later in the protocol, he failed to use his new
He had never produced that force in earlier prob- k.nowledge, but corrected his oversight a few lines
lem solving, nor had he self-explained the line later (we coded this as a learning event in Table
in the examples that was intended to teach it. 2). After that, he used the rule fairly consis-
Thus, we assume he had a knowledge gap. After tently. This rather complicated case illustrates
drawing forces, the subject fetched an example, how analogy can combine with self-explanation
viewed its force diagram, said, "That's the force to produce learning via a kind of justified anal-
I wasn't thinking of," and drew a normal force ogy (Kedar-Cabelli, 1985).
on his diagram. Thereafter, the subject regu- Although S101 was one of the Good solvers,
larly drew normal forces on his diagrams. In he was the worst of the group (Chi & VanLehn,
this case, analogy was used to check a step in 1992). He self-explained some parts of the ex-
the problem solving, and that revealed a knowl- amples, but he tended to ignore the details. In
edge gap. Whereas the preceding case illustrates particular, he glossed over the equations with
how analogy can help in filling gaps, this case il- the negative signs in them. We suspect that he
lustrates how analogy can help in detecting gaps. would have learned more if he had self-explained
There was a second case of analogy-based check- the examples more carefully as he studied them.
"ing causing detection of a gap, but it will not His discovery of the negative-sign rule seemed to
be presented here. These cases are consistent go much less smoothly than the discoveries of
with a finding of Chi et al. (1989), who classified the subjects who were self-explaining during ex-
analogical episodes as either reading, checking or ample studying (quoted earlier). Although more
copying. Good solvers had many fewer episodes evidence is certainly needed before drawing a
of reading and copying than Poor solvers, but firm conclusion, it currently appears that self-
they actually had more episodes of checking. explanation during example studying might be a

In the last case of learning while doing analog- more effective than self-explanation in the con-
ical problem solving, the subject was engaged in text of analogical problem solving.
a mixture of analogical problem solving and self- We believe that these cases are just a few of
explanation. Subject S101 apparently did not the many ways that analogy can combine with
know that projection onto the negative part of self-explanations, overly general rules, and other
an axis yields a negative formula. He said, "I'm learning techniques. The point is, however, that
trying to figure out why these are negative," re- these uses of analogy only briefly interrupt reg-
ferring to two negative signs in an example. He ular problem solving in order to achieve spe-
was trying in vain to self-explain the example. A cific meta-goals, such as detecting gaps or fill-
moment later he gave up, saying "Well let's see ing them. Wholesale analogy, the kind used by
if I can just push these in." He started adapting the Poor solvers, avoids detecting gaps and thus
equations from the example while complaining, tends to retard learning. Poor solvers use anal-
"This is called copying too much from the book. ogy to achieve base-level goals, such as having a
I hate that." This is clearly a case of analogi- force diagram or having a set of equations. How-
cal problem sudving of the worst kind. However, ever, the distinction between "meta-goals" and
after solving the equations and producing a neg- "base-level goals" is notoriously slippery, so the
ative formula, he said, "So, according to this, my next section tries to formulate a better heuristic
x-component is equal to -9, which means, okay. for when to use analogy.
That makes sense. That makes sense. One of
these has to always be negative, doesn't it?" Ap-
parently, the subject figured out why there is a 5 Discussion
negative sign (although it appears to be based
on some kind of symmetry argument, which is The preceding sections showed that in one study,
an overly general line of mathematical reasoning, effective human learners used analogical problem
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solving sparingly. With a little bit of compu- times as two. Sometimes a chain is treated as
tational common sense, we can generalize this a single body, sometimes as an infinite sequence
result and formulate a heuristic for when such of infinitely small bodies, and sometimes as two
sparse analogical problem solving should be ef- bodies (cf. Larkin, 1983). Most textbooks em-
fective. phasize that system definition is more of an art

There are four steps to solving a Newtonian than an algorithm, and few give any heuristics
mechanics physics problem: at all for defining systems. Although the prob-

lems used in our data are too simple to reveal
1.iDefion af teh e muysti(a ) serlcnsisting i- how the subjects learn about system definition,
alization of the physical world consisting of it seems quite likely that one way that system-
idealized bodies that have idealized relation- defining can be learned is by analogical problem
ships to other objects and move in idealized solving and building up a case library that pairs
trajectories, and (b) decide whether to base problems with systems.
the analysis on forces, energies or momenta. However, the other 3 steps are governed by
In Figure 1, line 1 corresponds to part a well-known principles, such as the force laws (for
(albeit, tersely), and part b is missing be- step 2), Newton's laws (for step 3) and mathe-
cause the text has only introduced one type matical transformations (for step 4). Moreover,
of analysis (forces) at this point, once the system has been defined, the analysis is

2. EzplVI 4e physics quantities. For each body completely determined. In step 2 (explication of
in the system, one notes the forces, energies physics quantities), one produces all the forces
or momenta associated with that body. Of- (or energies or momenta) acting on the system's
ten, a diagram is drawn to help one remem- bodies. In step 3 (equation generation), one pro-
ber them. In Figure 1, this occurs during duces all the equations implied by those physics
line 2. quantities.2 In step 4, the equations are solved

mechanically. The point here is that in physics
3. Generate equations. Each body contributes and many other mathematical analysis task do-

some equations, the connections between mains, the most important decisions are made
bodies contribute other equations, and the during system definition, and the rest of the anal-
problem's boundary conditions may con- ysis follows more or less deterministically from
tribute further equations. In Figure 1, the those choices. Although analogical problem solv-
equations are produced on line 6. ing would be useful for learning search control,

sarch control is not very important for steps 24. Solve the equations for the sought quantity, earch
and 3.

Although logically distinct, these steps are often Principles can be used for problem solving, but
intermingled in an solver's work. Solvers have this does not mean that they necessarily should
no trouble learning this basic procedure. It is be used. It may be that case-based reasoning is
often printed in the textbook. It is a specializa- more effective and/or more efficient than rule-
tion of the general 3-step procedure (define a sys- based reasoning. If so, analogical problem solv-
tern, formulate a mathematical model, solve it) ing would be an effective way to master such a
that is used for all mathematical analysis prob- task domain. For instance, case-based reason-
lems, from lowly arithmetic and algebraic word ing might be more effective than principle-based
problems to esoteric branches of science and en- reasoning for certain design tasks (e.g., cook-
gineering (see any textbook on systems theory, ing), in which case a student might be better off
e.g., Shearer, Murphy & Richardson, 1971). practicing wholesale analogical problem solving

The system definition step is quite different 2Actuafly, there are choices to make during step 3 re-
from the others. There are no real principles garding how to rotate the coordinate axes or whether to
for defining a system. Sometimes a man hold- omit certain equations. These choices affect the difficulty
ing a block is treated as one body, and some- of step 4, but not the ultimate outcome.
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rather than rule-based problem solving. How- of physics quantities will cause step 2 to pro-
ever, cue-based or analogical problem solving in duce too few forces, energies, etc., but this will
mathematical analysis task domains often pro- not causes impasses until much later, if at all.
duces only near transfer, whereas principle-based Consequently, it is a wise idea to use analogi-
reasoning can produce both near and far transfer cal problem solving to check the results of step
(e.g., Reed, 1989; Sweller & Cooper, 1985). Al- 2 before moving on to step 3. This is just what
though these studies did not distinguish transfer subject S105 did in the case mentioned earlier. 3

of system defining knowledge (presumably case- In general, when the goal is "generate all X that
based) from transfer of principles, it nonethe- you can think of," where X in S105's case is
less seems plausible that principle-based reason- "forces," then gaps will not cause impasses so
ing is more effective than case-based reasoning it is especially important to check the complete-
during steps 2 and 3 simply because it is pos- ness of the set of generated Xs, and analogy
sible to generate problems, such as the ones is one way to do that. An experienced learner
in Larkin (1983), that are quite dissimilar to of mathematical analyses may know this heuris-
textbook problems, thus thwarting or at least tic. There are probably other heuristics about
complicating case-based reasoning, and yet are when to check in order to detect errors early via
*amenable to solution by first principles. In short, analogy. Several subjects, for instance, routinely
it seems that the target knowledge for steps 2 checked their equations' signs and trigonometric
and 3 should be principles, and not cases nor functions against the examples.
search control. Once a gap is detected, analogy is certainly

It is worth recalling that our top-level goal is one possible way to fill it, but it is not easy to
to determine when analogical problem solving is predict whether one should use analogy or some
advisable for effective learning. So far, we have other technique, such as instantiating an overly
argued that analogy should be used during the general rule (VanLehn, Jones & Chi, 1991) or
system defining step and that principles should explanation pattern (Schank, 1986). A heuristic
be used instead of analogy during the other two for this decision would be hard to formulate.
steps. The next step in the argument is to con- We have arrived finally at our goal, which are
sider how principles can be learned during steps heuristics for deciding when to use analogical
2 and 3. problem solving. The heuristics are:

We can safely assume that the learner al-
ready knows many principles, so that the learn- 1. If the task domain, or some part of the task
ing problem is to detect a gap (missing principle) domain (e.g., steps 2 and 3), has principles,
and fill it, rather than to learn a whole batch and they are more effective knowledge than
of principles at once. In order to detect a gap, cases, and they require little search control,
one must use principles instead of analogies to then the target knowledge should be princi-
achieve goal, for otherwise the body of knowledge plea.
containing the gap will not be referenced and de- 2 If the target knowledge is pnnciples, they
tecting the gap would be impossible. Principle- should be acquired by gap filling, which im-
based problem solving will uncover gaps that plies:
cause impasses, but not all gaps cause impasses.
Thus, it is a good idea to check the interme- (a) Gap detection: Try to use principles
diate solutions produced by principle-based rea- instead of analogies, as a gap may show
soning, because early detection of an error will up as an impasse. Use analogy to
facilitate locating the gap that caused it. Anal- check the intermediate results derived
ogy is one way to check solutions. By consider- "I order to fill such gaps, Cascade 3 used analogy
ing the nature of the principle-based reasoning, essentially as a check of step 2, although the implemen-
one can predict when solution-checking is espe- tation was rather baoque (VanLehn & Jones, 1991; in

cially important. In physics, missing knowledge press-a).
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Abstract combinations strongly depends on domain.
and chosen learning algorithms.

An analytical approach to multistrategyd
learning is presented. Each single strat- Keywords: knowledge representation,
egy system corresponds to a classifier, and machine learning, multiple knowledge,
a multistrategy system corresponds to a multistrategy learning
combined classifier. Therefore, an ana-
lytical model of classification with many
different classifiers is developed to pre- In the case of noisy and incomplete learn-
dict the classification accuracy of the coin- ing data which are typical in real life, arti-
bined classifier. The necessary conditions ficial intelligence successfully adopted sev-
for the improvement of classification ac- eral techniques from other scientific dis-
curacv are determined within the model. ciplines, e.g. statistics. For example,
The influence of mutual dependence of through empirical measurements it has
classifiers is studied in the case of two been shown that statistical estimates are
classifiers. It is shown that the depen- inevitable when constructing or pruning a
dence doesn't effect the conditions un- single decision tree (Breiman et al.. 1984;
der which the improvement of classifica- Mingers, 19S9; Holder, 1991). During
tion accuracy emerges. The model is also the last decade, the question whether to
verified for two different systems learning use single-strategy or multistrategy (inte-
from medical data. Finally, some special grated) learning has often been addressed
cases are analysed. Our analysis shows by many authors.
that the optimal number of classifiers in
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For example, extensive measurements of the multistrategy approach enables the
many researchers in the field of empiri- improvements in the given case or not. In
cal learning have shown that combining our approach, an m2-parametric model is
several classifiers results in better results used to estimate the classification accu-
than tuning, no matter how fine, one sin- racy of a combination of m classifiers and
gle classifier (e.g. Buntine, 1990; Clark to compare it to the most accurate among
and Boswell, 1991; Gains, 1989). Basic them. In the special case of two classifiers,
principles of this approach can be found the effect of mutual dependence is intro-
in the work of several researchers (Brazdil duced using a hybrid classifier. The com-
et al., 1991; Handler et al. , 1991; Michal- parison of two classification methods on
ski, 1987; Minsky, 1991; Tecucci, 1991). medical domain is performed and the re-
In Bayesian analysis, it has been shown sults are in good agreement with the pre-
that it is better, at least in general, to de- dictions of our model. For the analysis
sign many classifiers and combine them on of behavior of more classifiers, our model
the basis of probability estimates (Cheese- is simplified to depend on two parameters
man, 1991). The results which support only, so that we can study the influence
this thesis have also been' achieved in of the properties of single classifier on the
several related areas, e.g. it has been performance of combination.
shown that, when overlapping many fil-
tering methods, the average rating signif- 2 Classification With m Clas-
icantly improves with the gFowing number sifiers
of methods (Foltz and Dumais, 1992). 2.1 General analysis
In this paper, single-strategy systems cor- In the following, examples are described

respond to single classifiers, and a mul- in attribute-value languages. Each ex-
tistrategy system corresponds to a coin- ample belongs to exactly one class. Let

bined classifier, the combination of m sin- us denote N attributes as A 1,...,AN
gle classifiers. The presented work at- and their values as (V1 1,... , V1 M1),
tempts to enhance the grounding of multi- (Vv ',.., VN MN). The measurement
strategy learning. Namely, the proposed space is then defined as
models are expected to predict whether

X = {V,...,VI M,}X ... X{VNl1..,VNM, }. (2.1)

Let X be a measurement space and C a Here, -R are real numbers, c denotes the
set of all possible classes. A domain is class of object : and cf is a confidence
then a set of ordered pairs factor of classification.

Let us now consider a set of classifiers, all
D C {((.F. c): : E AT. c E C), (2.2) mapping from the same X to the same C,

M = {d 1, d 2,..., d, }. There are different
and a classifier d is a function ways of combining the classification of

d: X--CxR
E '.(d(S. C.(1(1. Cf (2.3)
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these classifiers. One can take the result be weighted. In this presentation, we are
of classification with the greatest confi- dealing with the best-one principle. A
dence factor (best-one principle). We can multiple or combined classifier on a set M,
also take the class that was proposed by based on the best-one principle, is there-
the majority of classifiers (majority prin-, fore defined as
ciple). In addition, this voting can also

dM: X--*CxR

Si-4 (d&(F).c, di(i).cf); di(;).cf = max_ {dj(i).cf} (2.4)
dij EM

When classifying a single vector : E X 9 E 5, we have to determine the probabil-
with classifiers from M, each of them ity pi of its occurrence and the probability
can predict either correct (success, T) of the correct classification in a given sit-
or wrong class (failure, F). The result uation qg.
of the multiple classification can be de- In a given domain D, the probability of
scribed by a situation vector F E S, where correct classification of the i - th classifier
$ = {T, F}m and I[IMI = m. In this no- is denoted by pi. These probabilities play
tation, we set major role in our analysis. We will assume

IT, (i, di(i).c) E D 0 < pi < 1 to avoid trivial results. Under
i JT, (S, di(iYc)E) D the assumption that all the classifiers are

sI= F, (, d().c) • D mutually independent, the probability of
Let us now determine the probability of the occurrence of the situation 9 E S is
the correct classification of m combined
independent classifiers. For each situation

.Ps = (i slp) sj=~ j(2.3)

The determination of qg is, however, the first one succeeds and the second one
rather complicated and depends on the fails
combining technique. Since we use the
best-one principle, i.e. the result of multi- q,, =P(di).cf > d,(i).cf (2.6)
ple classification is the class predicted by Isi = T, sj = F).
the classifier with the greatest confidence
factor, we have to introduce parameters Now we have to determine the probability,
qij in our model to denote the probability that at least one of the classifiers di, --

that the confidence factor of the i-th clas- T has its confidence factor greater than
sifier is greater than the confidence factor all the classifiers dj, 9i = F
of the j-th classifier in a situation where

g= (, AT (d. 3 1 > d,(iF).cf Isi = T, si = F)] . (2.7)



34

Let us first express the inner factor

qi d () f>di(i). cflIs i = T, jj = F)] 28SiF (2.8)
-- 1' qij,

js s=F

where qi2 are defined in (2.6). In a special sifiers, the 4 possible situations are pre-
case where s, = T Vi, we define qi" = 1. sented in Table 1.
Let n3 be the number of T elements in Pr V
,F, n -= , 1. Now we can write the

i, si=T (F, F) (1- pi)(l- P'_) 0
general expression for qg (T, F) P(I - P2) q12

(F, T) p2(l - pI) q21
{ 1 (T, T) PIP2 1

r= (1 (l- q,), ni > 0 (2.9)
0, nr = 0. Table 1: 4 possible situations for 2 inde-

pendent classifiers
The probability of correct classification of
a multiple classifier on a set M is obtained For the probability of a correct classifica-
as a sum over all possible situations tion of a multiple classifier we obtain

PM = E pgq,. (2.10) PM = P3-q,
TE S iE S

This sum is the basis of further analysis. =PI(1 -P1)q12 +P2(1 -PI)q21

+ PiP2.
(2.11)

2.2 Special cases For a set with 3 independent classifier,

Let us now take a look at some special we obtain 8 different situations, which are

cases. In the case of 2 independent clas- shown in Table 2.

-F P; qT

(F, F, F) (1 - Pi)(l - p2)(1 - P3) 0
(T. F. F) pl(1- p2.)(l-p3) q12qI3
(F, T, F) p2 (1 - p)(1 -ps) q21q23
(F, F, T) p3(1 -pi)(1 -P2) q31q32
(T, T, F) pip2(1 -p3) q13 + q23 - q13q23

(T, F, T) pips(1 -P2) q12 + q32 - q12q32

(F, T, T) p2P3(1-Pl) q21 +-q31 -- q21q31

(T, T, T) PIP2P3 1

Table 2: Overview of situations for 3 classifiers
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In our model, each set M of m classifiers dealing with real-life domains. The ques-
on a given domain is described by mr2 pa- tion is, how relevant are the results of our
rameters, which can be arranged into a model in case of dependent classifiers. Let
matrix m x m us again assume that d, and d2 are two in-

PI q912 ... qim dependent classifiers and their probabili-

q21 P2 ... q2m ties of corrcct classification are p, and p,_,
Am (2.12) respectively. A hybrid classifier d; is then

q2a function which gives the same result as
\qml qm 2 Pm d, with probability d and the same result

The upper data description has been used as d2 with probability 1 - d. Then we can
for all our analyses. form a multiple classifier with di and d;.

2.3 Mutual dependence of classifiers The results are presented in Table 3.

The assumption that classifiers are mu-
tually independent, is rarely met when

s" pf p;, d = 0 pg, d = 1 qg

(F, F) (1- pi)((1-d)(1-p 2 )+d) (1 - pl)(l - p2) l-P, 0
(T, F) p1(l - d)(1 - P2 ) pi(1 - P2) 0 q12

(F, T) (1 - pi)(1 - d)p 2  (1 - pl)p2 0 q21

(T, T) pi((1 - d)p 2 + d) P1P2 Pi 1

Table 3: 4 possible situations for 2 dependent classifiers

As a sum over all situations, we obtain Though the dependence shrinks the gain
of classification accuracy, it doesn't effect

P.•i = L pgqg the conditions under which the gain in ob-
ie s tained. Similar result can also be shown

= (1 - d)pl (1 - p2)q,2 for relative gain of classification accuracy

+(1 - d)p2 (1 - Pl)q2 (2.13) A Pi

+ (1 - d)pp2 + dp r= -Pi

= (1- d)p.ij + dp. (1 - d)pi + dpi - pi

For d = 0, the result is obviously the same Pi (2.14)

as for two independent classifiers. For = (1- d) PM-P
d = 1. the classifiers are equal and the ob- (1
tained result is equal to the result of one
classifier. For 0 < d < 1. the classification It is obvious, that the mutual dependence
accuracy P11, lays between Pi and pM. If does not effect the sign of r1j.
we assume. without loss of generality, that

P, > P2. it holds p.11 > pi * P.11 > pi-



36

one. Neither of methods belongs to the AI

3 Measurements In Medical field, but they are often used when corn-
Domain paring classification accuracies of differ-

ent AI methods as references. They both
3.1 Description of data and classi- return the class distribution for a given
fiers example. In our experiments, the major

class was returned as a result of the clas-
For our m heasurementsorenal-ife data- onsification, and its probability as a confi-
patients and their coronary disease diag- dence factor.
noses have been used. Every patient was
described by 30 attributes and fell into 3.2 Verification of the model
one of the three possible classes. The set
contained 112 patients and was ten times During our experiments, we have mea-
randomly partitioned into a training (80 sured the classification accuracies pi, the
patients) and a testing set (32 patients). probabilities of occurances of all situa-
The two chosen methods were naive Bayes tions pi as well as probabilities of correct
using an m-estimate (m=2) for proba- classifications in given situation qF. The
bilities as the first method and the k- results are presented in Table 4.
th nearest neighbor (k=5) as the second

A Ps __

P; PtF. F) P(-r. t) P(P. 7) P(r. -r) q(r. F) q(r. 7)

0 0..... 0.844 0.156 0.000 0.031 0.813 ? 0.000

1 0.875 0.813 0.125 0.063 0.000 0.813 1.000 ?

2 0.844 0.844 0.125 0.031 0.031 0.813 1.000 1.000

3 0.781 0.750 0.219 0.031 0.000 0.750 0.000 ?

4 0.875 0.844 0.094 0.063 0.031 0.813 1.000 0.000

5 0.813 0.844 0.156 0.000 0.031 0.813 ? 0.000

6 0.844 0.875 0.125 0.000 0.031 0.844 ? 0.000

7 0.875 0.906 0.094 0.000 0.031 0.875 ? 0.000

8 0.938 0.969 0.031 0.000 0.031 0.938 ? 1.000

9 0.844 0.844 0.094 0.063 0.063 0.781 1.000 0.000

X 0.850 0.853 0.122 0.025 0.028 0.825 0.800 0.250

Table 4: Measured probabilities pi, pi and qg

In case that a certain situation F doesn't age about 0.3%. Both classifiers are quite
occur at all, the corresponding conditional similar and they also use the same data for
probability q; cannot be meaningfully es- iearning. We can also see that both classi-
tinated and is therefore denoted by ",", fier rarely disagree (P(T. F) +P(F. T) < 6%).
From Table 4 we can see that the classifi- This fact indicates a high level of mutual
cation accuracies p, and p., differ on aver- dependence of classifiers.
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In order to estimate the dependence co- per measurements. The resulting values
efficient d and the classification accuracy of d and P2 were then used for evalua-
of the virtual independent classifier P2, we tion of (2.13). The predictions of (2.13)
fit the situation probabilities pg from Ta- (pM(calc.)) are compared to the measured
ble 3 and the accuracy of the hybrid clas- classification accuracy of combined classi-
sifier p2= dpi + (1 - d)p2 to the up- fier (pM(meas.)) in Table 5.

d P2 pM(meas.) pM(calc.)

0 0.834 1.000 0.813 0.813
1 0.928 0.013 0.875 0.875
2 0.765 0.844 0.875 0.875
3 0.958 0.051 0.750 0.750
4 0.680 0.777 0.875 0.875
5 0.834 1.000 0.813 0.813
6 0.801 1.000 0.844 0.844
7 0.752 1.000 0.875 0.875
8 0.500 1.000 0.969 0.969
9 0.524 0.843 0.844 0.844

S0.784 0.864 0.853 0.853

Table 5: Dependence d and comparison of model and measurements

We can see that the dependence is very (2.11) is
high (over 75% in average) which doesn't
promise a substantial gain of classifica- PM = ••ps-jqg
tion accuracy. In two cases (partitions 1 SES

and 3), the fitting procedure chose a very - p(l -p)(q12 + q21) + p 2 .
small number for p, and tried to compen-
sate this with larger value for d. For other The necessary condition for relative gain
partitions, however, the obtained values of is then
d seem quite realistic.

PM - P > 0
P

(1 -P)(12 + q21) + P- 1 > 0

The gain of classification accuracy with (1 -- p)(q12 + q21 - 1) > 0

respect to pi and p* is obtained only for q12 + q21 > 1
partition 2 (compare Table 4 and Table
5). Why? Let us assumne that both clas- Indeed, this condition is met only for par-
sification accuracies are equal. p, = P2 tition 2. The correlation between the cor-
p. Under this assumption, the equation rect classification and confidence factor is

certainly a vital condition for the success
of a combined classifier.
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A closer look at the Table 4 explains the that all classification accuracies pi are the
reason for the failure: the first classi- same. We base this assumption on the ob-
fier (naive Bayes) seems to be too self- servation that in real-life domains (also in
confident as we can see from the values our case) the accuracies of different clas-
of qj. Even if it fails, its confidence factor sifiers do not differ very much. Second,
is greater than the one of the second clas- we also assumed that all the conditional
sifier (k-th nearest neighbor). Therefore, probabilities of successful multiple classi-
the simple best-one mechanism doesn't fication qij are the same. This is definitely
behave fairly and the failure of the first not true in our case. However, we claim
classifier easily superseeds the success of that one of the reasons for this is a rela-
the second one. It is important to notice, tive small number of situations where the
that the gain of classification accuracy can classifiers disagree and our results for qjj
be expected only for more balanced values aren't significant. Furthermore, as men-
of qj.. tioned above, these parameters should be

more balanced to obtain a fair behavior
4 A Simplified Model Of m of the best-one combining method. And
Classifiers finally, it seems that, in situations of prac-

tical interest for the use of multistrategy
For the analysis of behavior of more clas- tlearning, these parameters would depend
sifiers, our model is rather hard to use, learn the param ou dependmore on the domain than on the classify-
since it describes a system of m classifiers
with m 2 parameters. Therefore we have ing methods.

asound simplification to study Under the above assumptions, the equa-
toe m ne a f tions (2.10) gives us the following results
the influence of the properties of a sin- frrltv an p )

gle classifier on the performance of com-

bination for m > 2. First, we assumed

m=2; rM=(p--1)(1--2q)

m=3; r1 =(p--1)(1+p--6pq--3q2 +6pq 2 )

rn=4: rI =(p--1)(l+p+p2 -12p 2 q--12pq 2 +24p 2 q2

- 4q3 + Spq 3 - Sp2q3 + 6pq 4 - 6p2q4)

n= = : = (p - 1)(1 + p + p2 + p 3 _ 20p3q - 30p 2 q2 + 60p 3q2 _ 20pq3 + 40p2q3

-40p 3 q3 - 5q4 + 15pq4 + 15p-q _20p3q 4 + lOpq6 - 30p-q6 +20p~qb)

Since we simplified our model to depend they are positive, the gain of classification
on two parameters only. the results can be accuracy can be expected.
presented in 3D space. The upper func-
tions are shown in Figure 1. Only where
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4= 4
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Figure 1: Dependence of rm on p anld q

The line in Figure 1 indicates the border It seems that the relative gains for q=

between the areas of positive and negative 1 and very small classification accuracy

gain. W'e can clearly see that the improve- grows linearly with the number of classi-

ment of classification accuracy cannot be fiers in combination m. Let us again ex-

expected for small values of q. Also, the amine (2.10). If q is set to 1, all the qj.

relative improvement is obviously greater except the first one are also equal to 1.

for sinaller values of p.
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In the limit p 0 0, only the terms pg of model to the measured probabilities to es-

the form p + ... are of interest. Since timate the value of d for the given classi-
only the probabilities of situations with fiers.
one T component are of this form and Within the simplified model it has been
there are m such situations (not taking shown that the gain of the classification

into account the situation without T corn- accuracy grows linearly with the number

ponents, where qi = 0), the result is of combined classifiers if their accuracies
are small and the probabilities for the

PM = Mp + ... success of combination are high. How-
ever, when the accuracies of single classi-

as we expected. fiers are high, the expected gain decreases
and blindly adding new classifiers into the

combination doesn't seem to be the right
5 Conclusions method.

The analysis of multistrategy learning in Our work presents new indications that
r of multiple classification has the current learning techniques can be

the form ofmlil lsiiainhs substantially improved by the use of mul-
been presented. An analytical model has tipleJnowleg Hover it aso mdi-
been developed to predict the classifica- tiple knowledge. However, it also indi-

tion accuracy of the combination of differ- cates that the improvement appears only
under certain conditions, which have to be

ent classifier. The analytical results were

compared to the measurements of classifi- kept in mind during the development and

cation of tho methods on real-life domain, implementation of new combining meth-

The average error of the model prediction ods.

was under 1%, so it seems that we can rely References
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Abstract ior (that has to be represented and stored in its
In this paper we will discuss the significance mnemory), analyze it and discover what aspect
of memory and reflection in integrated learn- is responsible for a failure (or a success, or a
ing architectures. The Massive Memory Ar- delay, etc) and decide how to transform itself
chitecture, a uniform architecture based on (its knowledge, procedures for decision, etc)
episodic memory and case-based reasoning, is so that its future behavior is to be considered
described. Its reflective capabilities are de- more appropriate (or adapted). All this is fairly
scribed and we put forth the hypothesis that general, but the important think is the necessi-
learning methods are inference methods with ty of the system to be able to self-inspection
reflective capabilities, i.e. methods requiring a and self-modification, i.e. the capability of
self-model of the system. Self-models and reflection.
method implementation are based on concep- Re
tual, knowledge-level descriptions of infer- flection capabilities have been an issue with
ence. We show how the MMA reflective ca- long tradition in mathematics, philosophy,
pabilities can be used for integrating learning logic, linguistics and computer science. These
and problem solving, capabilities can be formally studied since Fe-

ferman's (1962) work on reflection principles
1 Introduction and computational approaches exist since FOL

(Weyhrauch 89) and 3-LISP (Smith 85). For
In this paper we will discuss the significance our purposes, reflection can be used to think
of memory and reflection in integrated learn- of learning methods as a kind of inference or
ing architectures. The role of memory in reasoning able to introspect into the systems
learning systems is widely recognized, as by representation of its behavior and modify the
Michalski's "equation": learning - infer- system structure and future behavior in an
ence + memory. This equation is a summary appropriate way. Therefore we will consider
of the basic abilities a learning system has to learning as an inference of reflective nature
have in order to be able to learn: the reasoning that uses a self-model of the system. This
ability and the memory storage and retrieval reflective nature means that learning is a
ability. In the next section we will introduce system's component able to self-inspect and
the Massive Memory Architecture (MMA), an self-modify the system itself. In order to infer
integrated learning architecture based on new decisions from the results and behavior of
episodic memory we are developing. We other inference processes, those results and
claim there is a second crucial issue in behavior have to be represented and stored in
learning architectures that is not so widely the memory for the learning inference to be
recognized, namely that of reflection. In order able to work with them.
to justify this approach we just have to realize
that a system that has to learn of its own expe- A third characteristic is the scheme of repre-
rience has to be able to inspect its own behav- sentation used for memory and inference. We

do not follow logic-oriented formalisms, but
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the conceptual or "knowledge-level" frame- process: create the objects that can be usable
works, like KADS (Wielinga 92) or Commet for learning and improving future behavior.
(Steels 90) developed for analyzing and repre- MMA records memories of successes and
senting complex reasoning in expert systems. failures of using methods for solving tasks.
In these frameworks reasoning is represented Since inference methods are also methods,

in terms of tasks (or goals), methods that may learning can be applied to different types of
achieve them, the subtasks needed to realize retrieval methods and selection methods used
methods, and the knowledge or models used in the process of searching and selecting
by those methods. As we will see, this ap- sources of knowledge in memory.
proach allows us (1) to analyze learning meth-
ods as a form of complex reasoning based on
task/method decomposition, and (2) represent Tk Available
and implement learning methods in a uniform eELECT Methods
way using this task/method decomposition and Methodi
(3) integrate them in a uniform architecture
using reflection principles to relate learning
with problem solving.

2 The Massive Memory Architecture Tas j Task" jZ TI s j3i
The MMA is an experimental framework for

experience-based learning and reasoning. It is IMetheh°d MIeth;d7
based on memorisation of past episodes of . /N J

piablem solving and in a default behavior that Figure 1. Task decomposition by methods. Any query to
resorts to analogous past cases (precedents) to a slot engages the system into a task. First of all, a
solve new situations. This is a default behavior method has to be selected from available methods for
in the sense that it is used when no concrete that kind of slot (every slot reifies a task). A method is
domain knowledge is available. The analogi- decomposed into subtasks (queries to other objects)
cal inference is modelled as an inference pat- recursively, until some method is direct. Method failure
tern Retrieve/Select/Adapt. This pattern is rei- engages backtracking to other available methods.

fled into an analogical inference method ob-
ject, where different retrieve or select methods Analogical methods are inference methods
can be used that are domain dependent. The that follow a task decomposition of Retrieve /
fact that inference methods are first class ob- Select / Adapt. Since different methods can be
jects means that inference methods can be pro- used for these subtasks, multiple methods of
grammed also. Inference methods in MMA case based reasoning can be integrated. The
are methods that follow a Retrieve / Select / characteristic of analogical methods is that the
Adapt pattern. Thus, an inference method is a Retrieve method uses a similarity-based
reification of the basic inference pattern of the method. Select methods can also be based on
architecture. Analogical methods are inference similarity or can be domain-based, knowl-
methods that follow a Retrieve by similarity edge-intensive methods. All inference meth-
methods and then may have Select methods ods are such because they are able to search
also of similarity or using domain-based, for sources from which some knowledge may
knowledge-intensive methods. Inheritance is be retrieved. The types of knowledge retrieved
also represented and implemented by explicit is either domain knowledge (as methods) and
inference methods that use a retrieve method experiential knowledge (situations of failure
that follows a link (e.g. the type link, but and success). Experiential knowledge is used
other inheritance methods are used, like the by MMA to bias the preferences of future ac-
species link). Thus, analogy and inheritance tions using precedent cases stored in past
are integrated as patterns of search in memory. episodes. The uniform nature of MMA (all

representation is in the form of slots in ob-
Every episode of problem solving of MMA is jects) supports learning at all decision points
represented and stored as an episode in mem- of the system.
ory. This is the main point of the reification
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where we state that the typical-person-
2.2 Elements of inference theory contains what we know by default

about persons. Moreover, an inference theory
Our purpose is then to reify the problem solv- may say, e.g. that in order to infer some
ing process into a collection of abstract infer- proposition P(John) we should use a default
ence components. We call this inference-level theory typical -person-theory only after
reflection. We have developed NOOS, a frame- not being able to infer P(John) using the main
based language with reflective capabilities to theory person-theory, where the Default-
implement the Massive Memory Architecture. Theory relation is used to prefer one theory
In NOOS, those elements are tasks (or goals) before the other according to the current sit-
and methods (or ways of achieving a goal), uation. This knowledge is contained in the
and theories. Therefore, all problem solving in person-inference-theory object
a domain will be by means of a task to be
solved and the methods that can be relevant to The basic inference process of NOOS follows
solve it. Moreover, if a method does not di- the Retrieve/Select/Adapt pattern. The other
rectly solve a task, it may induce subtasks that notion needed to explain the inference process
need to be solved. The NOOS approach is uni- are impasses. When a query for a slot (>>
form, and this entails that the problem solving father of John) is evaluated a new task is
process is also described in the system in started. Then either
terms of tasks and methods. For instance, if (i) task "father(John)" has a method like
there is no method specified for solving a (>> husband mother of self), or
given task, the task of the problem solving (ii) a no-method impasse occurs.
process is to find such a method; or if there Case (i) is called spontaneous inference and
are more than one method that can possibly occurs at the base level. However, in (ii) the
solve a task, a task of problem solving pro- impasse causes NOOS to search at a meta-level
cess is to choose among them. A way to do it for possible methods to use. Impasses are
is trying them out until one works: that would handled by metaobjects, that is to say MMA is
be a method for such a task. A task is engaged an impasse-driven reflective architecture. The
when exists a query asking the filler of a slot, architecture specifies which types impasses
expressed as (>> F of U) in NOOS syntax can appear, and which kind of metaobject will
and F(U) in abstract syntax. handle them. The no-method impasse in a slot

F(U) is handled by its metafunction. There the
The third component of our framework for in- applicable methods can be retrieved and se-
ference-level reflection are theories. Knowl- lected (maybe trying them out) and the solu-
edge cannot be simply represented as an unor- tion is cached in the slot (see Fig. 2). Every
ganised bag of axioms lest the language can- impasse is an opportunity for learning and the
cels its capability of manipulating different reification process creates and stores the ob-
theories. In NOOS, every theory is reified into jects needed to represent the situation (so that
an object of the language. For instance, the it can be useful in the future). In the slot ex-
person-theory object reifies the theory of ample, the information stored is the successful
what we know about persons, and we can have method and the methods tried that failed. The
another theory of what we know is typically inference can be more complex, e.g. maybe
true for persons reified in the typical-per- the applicable methods for slot query
son-theory object. Certainly, that leaves (>> father of John) are unknown. This is
open the issue of how these two theories relate a new kind of impasse: the no-metaf unction
to each other, i.e. how to use and manipulate impasse and is handled by the metatheory of
them appropriately. In the uniform approach John that possesses inference methods able to
of NOOS, there is an inference theory that search, retrieve and select methods in other
specifies how these domain theories are objects. The point to notice is that the uni-
treated when trying to solve some problem formity of NOOS treats all situations in the
about persons. Relations among theories can same way. Ar in Soar, every impasse arises
be stated in the usual way, as in the assertion from lack of knowledge: either because the

Default-Theory(person-theory) = system does not know what to do, or it has
= typical-person-theory several possibilities to act and has to decide
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fer some new decision, and mod-Doli berate Inference ify the base-level in such a way
Also vailable that it complies to that decision

Le'01 Methods tethod (Smith 85). The Massive Memory
Architecture has a model of the
"usage of methods for solving
tasks. MMA self-model for case-

7.•asse Learning Result based reasoning consists of the
F decisions, successes and failures

of methods that are declaratively
8"Te Caching Solution recorded in the system's memory
Le/vel of cases. This model is reified in

Figure 2. The Abstract Inference Process in NOOS. Impasse, Lewr MMA, i.e. those concepts are
and Result are themselves Inference Processes due to the reflective putational objects accessible
nature of inference and representation in NOOS. Methods come in two to the system. This model allows
types, namely Inference Methods and Domain Methods. MMA to retrieve methods alreadyused for similar problems and to
among them. The first type of impasses is control search by analogical
handled by inference methods that know how transfer of past decisions in similar situations
to retrieve sources of knowledge. Multiple to the current problem. The meta-level issue is
possibilities are handled by strategic cichds, also implicit in ILT, the inferential learning
objects that know about preferencing and se- theory (Michalski 91). In ELT learning meth-
lecting among choices. ods are analysed as higher-level inference pat-

terns the result of which are "knowledge
3 Reflection and self-models transmutations", i.e. the modification of the

system's knowledge as mandated by the infer-
We will first justify the claim that learning is a ence performed by the learning method.
type of meta-level inference, arguing that
learning requires a self-model of the system. 3.1 Reification and reflection
Then, we will explain the processes of reifica-
tion and reflection. Self-models are required The reflection principles specify the relation-
because of the integration of learning methods ship between a theory " and its meta-theory
with a problem solving system. In general, a fT. The upward principles specify the reifi-
learning method has to have a model of what cation process that encodes some aspects of -
are "successes"' and "failures" in the architec- into ground facts of rL-. That is to say, reifi-
ture, and of other relevant concepts for learn- cation constructs a particular model of - in the
ing (e. g. the SOLE-ALTERNATIVE concept in language used by f1,T. The nature of reifica-
EBL-PRODIGY). These concepts are part of tion and the model constructed is open, i.e. it
the learning self-model of the architecture, depends on the purpose for which the coding
These models depend upon what is needed by is made. We will use in MMA a knowledge-
the method, i.e. they are different models for level model of task/method/theory decompo-
different learning methods (this is called sition (explained in §2) as a meta-model of the"white-box requirement" in (Carbonell 91), base-level inference. We follow a framework
meaning that any ML method has to be able to similar to the Components of Expertise (Steels
view and represent what it requires of the 90), A similar approach is taken in (Akker-
problem solver). Moreover, the learning mans 92) where the meta-model is the KADS
method needs to be able to effectively inspect modelling framework (Wielinga 92) for expert
part of the structure and behavior (state) of the systems. However, we do not follow them
architecture, and interpret that into its method- strictly, except in the general idea of using as
specific model. Therefore, learning can be "elements of inference" goals, methods, and
viewed a type of meta-level inference. A meta- theories. The meta-theory nlT conter~s
level inference is a kind of inference able to knowledge that allows to deduce how to ex-
inspect (to have a model of) the base-level, in- tend this model deducing new facts about it.

This deduction process is called meta-level in-
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the MMA can obtain the method
m4eta-Theory ?1JY that successfully computed the

-Extended age of John using this query:
meta-level model of =thod reify 0) ae of Jam))

Mldel]o7Ifeec 8-~ d4ttd Age-n~othd-U
' __- Other learning methods that we

are incorporating to MMA use
this self-model but also require its

Reification Reflection This as expectd be-
cause of our self-models hypothe-
sis implies that every learning

Base Theory T Base Theory 7 method may need to know differ-
ent aspects of the architecture.

Figure 3. Reification constructs a model of theory T. Metalevel We are then in a process where an
inference deduces new facts or takes new decisions that extend or analysis of those learning meth-
modify this model using a meta-theory MT. Finally, reflection Costructs ods elucidate which aspects of
a new theory r that faithfully realises the extended model of T. NOOS that are hidden or internal

to its implementation are to be
ference, and the content of this theory is again reified and made accessible to the architecture.
specific to the purpose at hand (the meta-the-
ory is indeed no more than a theory). Finally, 4 A diagnosis example
downward principles specify the reflection
process that given a new, extended model of T Let us show the dynamics of the MMA with a
has to transform the theory 7 to a new theory simple example like the car does-not-start
7' that complies to that new model. A more diagnosis. johns-car gives the problem data
detailed explanation of the reflective princi- where complaint is that the car does not start
pies and of the semantics of NOOS can be and the task is diagnosis.
found in (Plaza 92a). (define johns-car

3Cowner john)
3.2 Self-models in MMA (complaint does-not-start)

(gas-level full)

Our hypothesis is that different types of (battery-voltage low-voltage))

learning methods would require different self- We may have two ways of solve the problem,
models of the architecture. The current im- one is the knowledge-based diagnosis using a
plementation of MMA has a model of the generate and test method, and the other one is
methods used for each task: methods that a precedent-based method. The knowledge to
have been proposed (by an inference method), diagnose cars is in car-g&t-diagnosis but it
methods that have been tried but failed, and might be incomplete (e.g. not always can gen-
the method that has succeeded. This informa- erate all possible hypothesis). For this reason
tion is stored in an object called slot-access. the inference theory for johns-car holds a
In the following we will use quotes "X" to second method based on analogy to be used
designate the reification of X. when the first method fails. The preference to

Access-NaC(CAge(John)*) -> N.ge m  use first car-g&t-diagnosis is based in the
Dowain("Age(John)*) . #John> knowledge that is a stronger method than
Method("Age(John)*) -> #94ethod Age-method-3> analogy. If the MMA did not have this knowl-
FailedC(Age(John)') -> #<Method Age-method-S>
Referent(CAge(John)") -> #,32-Years> edge, it would choose one of both methods

randomly, and after solving several car diag-
This self-model is used by inference methods noses cases it could-base its preference on
to retrieve and transfer the metafunction (con- their successes and failures. [Syntactic remark:
taining the available methods) from a task new objects or slots are written in bold,
solved into a precedent case to a task in the (define (foo b a r) <body>) creates an ob
present problem, and for inferring preferences ject (or a slot) of name b a r with body <body>
over method selection based on their success and type foo. Anonymous objects are desig-
or failure in those precedents. For instance, nated by its relation to a named one, e.g. the
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"metatheory of johns-car" is designated as (define (strategic-cliche generate4-test)
(meta reify of johns-car)]. (generate-hypotheses)
(define (tnference-theory (test-hypothesis )

(contents (>> generate-hypotheses))
(Cmts reify of Johns-car )) (define (precedent-select select)) ;select hyp.

(contents car-diagnosts-analogy-mthod (adapt (- test-hypothesis))) ;test curr. hyp.
car-diagnosis-inheritance-method)

(define (link-select select) Generate-&-test method is a generic
(link (C> reify of stronger-than)))) method and the select subtask uses a fairly

(define (theory Ctheory reify of johns-car)) general method. More specialized generate-
(type car-9at-diagnosis)) &-test methods can be written with more fo-

(define (basic-analogy-method cused selection. In car-g&t-diagnosis we
car-diagnosts-analogy-method )) can see that select-hypothesis first uses

(define *h some knowledge-intensive criterion (like ex-
car-diagnosis-tnheritance-method) pected frequency of malfunctions) and if some

(stronger-than car-diagnosis-analogy-method)) unique selection cannot be achieved then a
I second method, precedent-select, is used

The car-g&t-diagnosis holds the knowl- to choose the best hypothesis.
edge to generate malfunction hypothesis from
complaints and test those hypotheses checking (define (sequential-cliche select-hypothesis(link)

the facts known of a specific car (like the sta- (contents (define (link-preference)
tus of battery and gas tank). It also holds some (link (>> link)))

preferences to choose among competing hy- (define (precedent-select ))))

pothesis. Hypothesis selection is based on The generate-hypothesis task uses the
knowledge about the estimated frequency of complaint-to-malfunction-mop method
malfunctions, interpreting the more-fre- that maps each complaint in our theory to the
quent-than relation as a preference relation known set possible malfunctions that may
to select the current hypothesis, cause it. This form of domain knowledge is

(define car-gft-diagnosis very direct, and there could be other methods
(complaint) that derive this mapping from a causal model.
(define (conditional battery-lam?)

(condition (define (strategic-cliche
(>> low-voltage equal battery-voltage)) complaint-to-malfunction-map)

(result true)) (complaint )
(define (conditional no-gas?) (contents (>> plausible-hypotheses complaint)))

(condition (>> empty equal gas-level)))
(define (generate-&-test diagnosis ) (define (complaint does-not-start-complaint

(define (complaint-to-ealfunction-map (plausible-hypotheses
g•enridt-hypotheses) low-battery-malfunction

(complaint (>> complaint))) no-gas-malfunction))
(define (select-hypothesis select)

(link (>> reify of more-frequent-than))) Each car malfunction defines the test that can
(define (test-malfunction test-hypothesis) be used to verify it effectively occurs in a de-

(device (>>)) ; the car itself
(malfunction (>> select))))) ;cur. hypoth. vice, a repair recommendation and different

relationships known to hold among car mal-
The generate-&-test method is a strategic functions (like their expected frequency, in the
clich6 that retrieves its choice set by means of example below).
a generate-hypothesis method. The prece- (define (dw-malfintm low-battery-malfunction)
dent-select method selects among the (test
choice set using a method that retrieves a 0- mfy of (- loftdtW eql btuy.%dtW)))
precedent case and prefers the hypothesis in (repair recharge-car-battery)

the choice set according to their result (more-probable-than starter-malfunction))

(successfulluntried/failed) in that precedent. (define (conditional-method test-malfunction)

The adapt process executes the test-hypothesis (device)
eh(malfunction

task to elucidate whether the current hypothe- (condition (>> (>> test malfunction) device)

ses is an adequate solution. (result (>> malfunction)))

Now let us suppose that our theory about car
diagnosis is incomplete (e.g. not all mappings
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from complaints to malfunctions are corn- Deliberate learning methods have in common
plete), and that this is the case with johns- a characteristic task decomposition shown in
car. The failure of car-g&t-diagnosis causes Fig. 4. The different deliberate learning meth-
the failure of the first inference method in ods are defined as an Introspect/Construct
metatheory of johns-car, and then the less /Incorporate pattenri A specific method is
preferred precedent-based method is selected, obtained filling the task decomposition with
Retrieval of similar cases of car diagnosis can specific methods for each subtask. Different
now retrieve casuistry information given while learning methods are implemented with par-
describing particular problem solving episo- ticular methods for (A) selecting a training set
des. The peters-car precedent case asserts a (introspect) from objects activated while
simple causal explanation between the corn- solving a task in NOOS, (B) for constructing
plaint does-not-start and the diagnosis from them a new object, and (C) for incorpo-
known for that problem. Since the explanation rate that object to the rest of objects in the
of this case is in form of a method for diagno- memory in an appropriate way.
sis, car-diagnosis-analogy-method re-
trieves and applies this method to johns-car 6 Related work and Discussion
to see if that explanation also holds there.

(define peters-car Our work on architectures is related to cogni-
(complaint does-not-start) tive architectures like SOAR (Newell 90),
(battery-voltage low-voltage) THEO (Mitchell 91), and PRODWGY (Carbonell
(define Ccausal-explanation diagnosis ) 91). At first sight, MMA language resembles

(cause ( ,w, ln*lt awl htv3W.,t1j)) THEO since NOOS is a frame language with
(effect low-battery-malfunction)) caching, TMS, and "available methods" for

(repair (>> repair malfunction diagnosis))) slots. However, THEO does not provide a clear

metaobject definition, does not reason about
5 Deliberate learning preferences over methods, and does not incor-

porate analogical reasoning or explicit infer-
The memorization of the episodes in problem ence methods. At a deeper level MMA resem-
solving constitutes the spontaneous and ubiq- bles Soar in that MMA is a uniform, impasse-
uitous learning method used by MMA and re- driven architecture with a built-in learning
quired by MMA so as to function. We are cur- method. The differences are that spontaneous
rently experimenting with forms of deliberate learning here is episode memorization and that
learning integrated in MMA. Deliberate learn- our "learning as metalevel inference" hypoth-
ing is made of learning methods (implemented esis shapes another approach to inference and
as regular NOOS methods) that have to be learning by the use of reification, self-models
explicitly called to be executed (typically, and the explicit representation of inference
after finishing a task). The main purpose of methods. The introspective use of meta-expla-
Plaza and Arcos (1993) is to show the integra- nations in Meta-AQUA (Ram et al 92) is also
tion of memory and analogy through reflec- related to MMA approach that exploits the re-
tion, so in this section we are just going to flective approach to learning. Meta-AQUA is
sketch some of the essential features of delib- not impasse-driven but proposes a mapping
erate learning in MMA. between classes of situations and learning

CCUTIM LEWmethods that can improve the system. Meta-
CC"' CB= Router (Stroulia 92) combines planning and

case-based reasoning in a task-decomposition

framework and defines a typology of errorsnm~sPz= WC:oRUAT and methods for repair. Our current NOOS
language is to be considered a descendant of

sm •r languages RLL-1 (Greiner and Lenat 80) and
F E I~r KRS (van Marcke 87).

Figure 4. Task structure of a deliberate learning
method. Each deliberate learning method is defined Related work on knowledge-level modelling
with concrete methods for those subtasks. of Al systems includes the Commet (or com-

ponents of expertise) framework (Steels 90),
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and the KADS methodology (Akkernans 92). In K Van Kehn (Eds.), Architectures for Intelligence.
Our approach is closer to the COMMET in Lawrence Edbaum Ass., Hillsdadale, NJ, 1991.
that the ontology of models, tasks and meth- Feferman, S, "Transfinite recursive progressions of
ods proposed by COMMET is related to axiomatic theories". Journal of Symbolic Logic. 27.259-
MMA's ontology of theories, methods and 316, 1962.
tasks. However, NOOS considers two layers: Greiner, R., Lenat, D. "RLL-1: A Representation
base-level domain theories and methods, and Language Language", -PP-80-9 Comp. Science dept.,
meta-level inference theories and methods, Stanford University, 1980.
while the Commet approach is not reflective Michalski, R S, "Inferential learning theory as a basis
and only is concerned with the domain layer. for multistrategy task-adaptive learning". In R
The KADS methodology is much more differ- Michaiski and G Tecuci (Eds.) Proc. Int. Work. on
ent but they have used a reflective framework Multistrategy Learning, p. 3-18, 1991.
to describe the KADS four-layer architecture. S Minton. J Carbonell, C Knoblock, D Kuokka, 0
However, neither Commet nor KADS have Etzioni, Y Gil, "Explanation-based learning: A problem
been used to perform learning tasks, and in solving perspective", Artificial Intelligence, 40, 63-118,
fact MMA is the first attempt to apply knowl- 1989.
edge level analysis to learning tasks and to de- Mitchell, T.M., Allen, J., Chalasani, P., Cheng, J.,
velop a computational architecture that em- Etzioni, 0., Ringuette, M., Schlimmer, J. C, "Theo: a
bodies that approach. fra-mework for self-improving systems". In K Van

Lenhn (Ed.) Architectures for Intelligence. LaurenceErlbaum, 1991.
We have developed an architecture based on
spontaneous learning by memorization of Newell, A, Unified Theories of Cognition. Cambridge:
episodes and inference based on transfer from 1arvard Univ. Press, 1990.
precedents. We are currently extending it to Plaza, E. "Reflection for analogy". Proc. IMSA'92
integrate other learning methods. Representa- Workshop on Reflection and Metalevel Architectures,
tion of learning methods and inference meth- Tokyo, November 1992, p. 166-171, 1992.
ods is uniform and based on conceptual Plaza, E. Constitutional Axioms and Rules for NOOS.
frameworks previously used in the analysis HliA Research Report 92115. 1992b.
and design expert systems and for knowledge Plaza, E, Arcos, J L, Reflection. Memory, and Learnung,
acquisition. This "elements of inference" IIlA RR 93/2, 1993.
model allows reflection about inference, in- Ram, A. Cox, M T, Narayanan, S, "An architecture for
£tead of previously used procedural or logic integrated introspective learning". Proc. ML'92
reflection. Reflection principles have been Workshop on Computational Architecturesfor Machine
used to provide a computational mechanism to Learning and Knowledge Acquisition, 1992.
integrate learning and inference in a uniform Smith, B.C. "Reflection and semantics in a procedural
representation. Reflection is also being used to language", In Brachman, R. J., and Levesque, H. J.
model in a principled way the relationship (Eds.) Readings in Knowledge Representation. Morgan
between learning components and the archi- Kauffman, pp. 31-40. 1985.
tecture as a whole. Steels, L, "The Components of Expertise", Al

Magazine, Summer 1990.
Acknowledgements Stroulia, E and Goel, A K. An architecture for
The research reported on this paper has been developed incremental self-adaptation. Proc. ML-92 Workshop on
at the IIA inside the Massive Memory Project (CICYT Computational Architectures for Machine Learning and

t801/90. Knowledge Acquisition. 7/4/92: Abeerdeen, Scotland,
grant 00. 1992.

References van Marcke, K, "KRS: An object-oriented repre-
sentation language". Revue dIntel. Artif. 1(4), 43-68,

Akkermans, H., van Harmelen. F., Schreiber, G., 1987.
Wielinga, B, "A formalisation of knowledge-level Weyhrauch, R W (1989), "Prolegomena to a theory of
model for knowledge acquisition". In t J. Intell. Sys. mechinazed formal reasoning". AR77NT, 13(2).
8(2): 169-208, 1993. Wielinga, B, Schreiber, A, Breuker, J, "KADS: A
Carbonell, J G, Knoblock. C A, Minton. S. "Prodigy: modelling approach to knowledge engineering".
An integrated architecture for planning and learning." Knowledge Acquisition 4(1), 1992.



50

Learning Scope, Task Analysis, and Sharable Components

Erik M Altmann
School of Computer Science
Carnegie Mellon University

altmann@cs.cmu.edu

Abstract kinds of learning in one system to coordinate
and communicate effectively. Various

Problems facing multistrategy learning specific solutions have been investigated,
include managing the complexity of multiple including hard-wiring control of the
interacting learning components and components (Hammond, 1989; Pazzani,
managing the1990) and opening control to the user (Mok,
High-level approaches to' these two problems 1991) A o ren general meth odologic,
are presented. Analysis of the task domain 1991). A more general methodological
can generate constraints on how performance problem is to develop constraints on system
and learning components interact. Tis functionality that help shrink the design space
analysis can be verified with respect to human of possible solutions. Emulating humans'
performance, providing a standard against ability to perform and learn flexibly is one
which to measure the scope of learning in the approach to developing such constraints.
system. The marginal cost of adding w-w
varieties of learning to a system can be A second problem in multistrategy learning is
reduced by using shamble learning the cost of implementing multiple kinds of
components, like those embedded in general learning in a given system. Cost increases
problem-solving architectures. These with the variety of learning forms, reflecting
approaches require a meaningful definition of the need to implement additional unique
what constitutes learning variety, in order that learning algorithms. Lowering the marginal
systems can be compared and that system cost of adding new kinds of learning to a
complexity and implementation cost can be system will be an enabling factor in increasing
evaluated with respect to the scope of learning the learning scope of systems. Architectural
that the system achieves. Two constituents of learning components will play a role in
learning scope, density and diversity, are reducing this marginal cost.
proposed.

Keywords: Multistrategy learning, human Bearing on both these problems is that the

problem solving, task analysis, architectures notion of a variety of kinds of learning, or
learning scope, should be a well-defined,
measurable quantity. Some means of

1. Introduction evaluation is necessary. The learning scope of
a system consists of at least two measurable

Multistrategy learning faces some hard parameters, density and diversity.
problems. One is that of getting multiple
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Section 2 defines density and diversity. 3. Domain-Specific Taxonomies
Section 3 proposes that a useful taxonomy for
measuring diversity derives from an analysis A taxonomy for measuring learning diversity

of the domain at hand. Section 4 gives a can be derived from an analysis of the

sample analysis that generates such a system's domain. This measure is justified by
taxonomy. Section 6 discusses the role of the folowing knowledge-level perspective.
shamble learning components in reducing Learning components generate knowledge for
implementation cost. Section 7 draws a target. A target is a body of performance
together implications of the discussion. knowledge that grows with the output of some

learning component. Each target represents a
2. A Definition of Learning Scope different body of knowledge, so targets

provide a dimension of knowledge-level
Learning scope has at least two constituents. variability. This dimension constitutes a

First, scope implies learning with respect to as marea ofl learnin diversity Mo reover, i
manyof sytems apecs o peforanc as measure of learning diversity. Moreover, it

many of a system's aspects of performance as explicitly reflects the kinds of knowledge
possible. This quality will be called density, processed through learning, complementing
A measure for density is the proportion of domain-independent taxonomies like those of
components in a system that are learning Langley (1987) and Carbonell et al (1983).

targets, where a learning target is a system

component (process or data structure) whose A domain-specific taxonomy needs to be
behavior changes over time. Density reflects constructed anew for each domain, using task
the extent to which learning pervades the analysis. One methodology is as follows. The
system. One-hundred percent density would task analyst first fnds features that the domain
solve the "wandering bottleneck" problem affords (offers) for problem solving methods
(Mitchell, 1983), in which a performance to manipulate. Domains differ in what
bottleneck arises wherever there is a features they afford. For example, simple
component that is not a target, symbolic-logic domains afford the detection

of differences between current and desired
Learning density by itself fails to capture at states, making means-ends analysis (MEA)
least one intuition about what constitutes feasible; in chess, on the other hand, the
scope: a system with many similar learning desired state is too vague to afford difference
targets may be learning-dense, but in a way detection, so MEA is not feasible (Newell and
that is degenerate in terms of variety. Simon, 1972).

Therefore, a second constituent of scope must With affordances in hand, the analyst then
measure the diversity in a system's learning finds methods that use them (such as MBA).
behavior. Measuring diversity requires an Methods, applied in a particular domain, are
objective standard, which should be external made up of components of performance
to the system so that it can be used to compare knowledge. These constituents are learning
systems. Such a standard would have the targets. The collection of such targets, from
character of a taxonomy that categorizes kinds all the methods that apply to the domain, form
of learning. Relative to such a taxonomy, the domain-specific taxonomy.
diversity is the extent to which a learning
system covers the taxonomy's categories. Learning diversity relative to this taxonomy
Diversity complements density, providing a depends on performance diversity; the more
means of evaluating the significance of having varied the performance components, the more
many learning targets. varied the set of learning targets. This may

seem to just move the difficulty from the
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345 Desired

Figure 1: Simple task from the switchyard domain

measurement of learning diversity to the external standard of proficiency that computer
measurement of performance diversity. But systems have not yet reached.
task analysis, while it cannot directly specify
how a system will learn when operating in a Aa peDom a
particular task environment, can specify how a Taxonomy
system must perform in that environment This section gives an example of a domain-
(Newell and Simon, 1972; Wilde and Lewis, specific taxonomy by sketching several
1991). The notion that task analysis can problem-solving methods for a domain, in
define requirements for system performance enough detail to show high-level components
underlies Anderson's rational-analysis theory and how the method is useful. These methods
of cognition (Anderson, 1990). Similarly, reveal a set of learning targets for the domain.
diversity in performance as a response to a In total there are five methods and ten targets.
complex environment is a subtext of Minsky's
Society of Mind (Minsky, 1986). Thus task Tasks in this domain manipulate trains in a
analysis has a history of being used to analyze railway switchyard. The sample task analysis
performance. With respect to learning, shows how affordances in the domain (such as
analyzing performance is an indirect but difference detection) are manipulated by
operational way to measure learning diversity, methods, and how even a simple, knowledge-

lean domain can yield a variety of targets.
Moreover, task analysis is itself amenable to

verification against an external standard. Figure 1 shows a simple task in which the two
Human performance can be monitored unshaded cars swap positions. The solution
experimentally through protocols (Ericsson path is included; a step consists of a train
and Simon, 1984), and analyzed to model the moving from one position (left, right, or
underlying computational behavior (Newell siding) to another.
and Simon, 1972). Performance
specifications derived from task analysis can Figure 2 shows a puzzle task (Delft and
therefore be calibrated against models of Botermans, 1978), in which two trains need to
human performance. pass each other when the siding is too small

for a full train. The optimal solution has
This calibration is relative to the human scale, sixteen moves.
While this scale is not the limit of
performance and learning, it provides an

capdry: 1 unit
Initial ~..... "......Dsie

Inltla Desired

C1 El E2 C2 E2 C2 C1 El

Figure 2: Puzzle task from the switchyard domain
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Figure 3: M, must be undone

so M1  , M2

Figure 4: M1 is necessary

1. Heuristic search (1 target). Heuristics are Case memory itself is a target, because the
knowledge about what steps are or are not more cases learned the better (if they are
usually useful. One powerful heuristic for the stored and retrieved properly). When a case is
puzzle task prefers moving trains with one stored, a component must decide how the case
engine to moving trains with two. The pool of will be indexed. This component is also a
heuristic knowledge is a learning target. A target, because good indexing depends on
learning component for this target could knowledge about what features of a case are
compile heuristics from past experience, or relevant, and this knowledge can be learned.
specialize them from domain-independent And at retrieval time, another component must
heuristics in the manner of Eurisko (Lenat, search for relevant cases. But cases that seem
1983). relevant may be misleading, because indexing

cannot be perfect. For example, in Figure 4
2. Case-based search control (3 targets). the move M 1, which was a dead end in Figure
Case-based reasoning (CBR) makes use of a 3, is necessary to allow the engine on the
memory of past problem solving episodes siding to move past the left-hand train. Thus
(cases). One kind of useful case comprises a the retrieval component is also a target,
sequence of moves, the task to which the because, as it learns more about the domain, it
sequence was applied, and the result, whether can retrieve cases more accurately.
positive or negative (Veloso and Carbonell,
1991). Figure 3 shows two successive moves 3. Means-ends analysis (3 targets). Means-
from the initial state of the puzzle task, ends analysis (MEA) requires that the current
applying the heuristic from the previous state be compared with a desired state and
paragraph to choose the second move (M2 ). differences detected. In Figure 5, the
The heuristic in this case leads to a state loop. unshaded engine begins to the right of the
To prevent this loop from recurring, either flatcar but ends up not to the right. Reducing
immediately or later in this or another task, this difference entails getting the two units
M1 and its outcome under this heuristic can be past each other, but the steps needed lead
learned, for recall under similar directly to the desired state. MEA is
circumstances. particularly powerful in this case.

S"- Engine to the dght of flatcar
S........ Engine NOT to the right of latcar

Figure 5: Applying means-ends analysis
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Flmqre 6: A correct but inefficient solution

Components for MEA include difference the systei.
detection, difference ranking, and the
connections between operators and the Second, it provides a specification of
differences they reduce. All three are targets performance methods for that domain. The
(see also Rich 1983, p 367, for a discussion of more detailed the task analysis, the more
learning in MEA). detailed the specification.

4. Solution refinement (I target). The Third, and related to the previous point, it
switchyard domain admits solutions that are provides a specification for how to arrange
correct but inefficient In Figure 6 the task is communication and control between methods.
solved in three steps, but can be solved in one In the switchyard example, strategy selection
by moving the unshaded train down from the (method 5) received only perfunctory
siding directly. Humans are adept at treatment, but in principle task analysis could
recognizing and avoiding simple inefficient yield considerable guidance for how to
sequences like this one. In general this organize the other methods to work together
requires combinatoric search, making solution productively. This makes task analysis an
refinement a good target: the problem solver important source of leverage on the hard
can get better at avoiding inefficient problems of integrating multiple methods.
sequences. Fourth, task analysis can be verified for

5. Strategy selection (2 targets). Given completeness relative to human performance.
multiple methods, the problem solver must be Tius verification serves to calibrate a domain-
able to make tactical decisions about when to specific taxonomy to the human scale.
choose a particular method and when to
compose methods (an example of composition
would be the application of MEA during In any kind of system-building, cost can be
solution refinement). It must also evaluate reduced by sharing (reusing) modules. For
whether a method is making progress and learning systems, cost can be reduced by
abandon it if not. The problem solver can get sharing learning components. Sharable
better at selecting methods and smarter about learning components today are typically found
abandoning them. embedded in general problem-solving
5. The Uses of Task Analysis architectures. Examples include chunking in

Soar (Laird et al, 1986), the Labyrinth
Task analysis as demonstrated in the previous conceptual-clustering module in Icarus
subsection serves several purposes, (Langley et al, 1991), and the various learning
summarized here. First, it provides an modules in Prodigy (Carbonell et al, 1991).
external standard against which to measure Two factors affect the
learning diversity; a system learns diversely to p ro a particuper
the extent that its kinds of learning cover the airsitecture to support broad learning scope.
targets identified through task analysis. This First is the extent to which the architecture
external measure of scope complements reduces the overhead of expanding the
density, which provides a measure internal to learning scope of a system. Ideally, adding a
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new performance method would be routine. Rosenbloom et al, 1993).
So would connecting it to a sharable learning
component to create one or more learning The accumulated evidence for chunking
targets. In fact, however, routine addition of suggests that it is general enough to support
new methods and routine integration with unbounded increases in scope, but that
learning components has not been achieved, possibility has not been proven. The promise
For example, correct integration of chunking of mechanisms like chunking has yet to be

into Soar performance systems is highly tested in an effort aimed directly at achieving

sensitive to the representation of performance great scope in a single system.
knowledge (Laird et al, 1986). But this 7. Implications for Multistrategy
sensitivity may be endemic to learning Lea ing
systems (Flann and Dietterich, 1989); if so,
the relative promise of sharable components Two observations and an ensuing hypothesis
remains, can be drawn from this discussion of scope

The second factor affecting an architecture's measures and sharable learing components.

potential for supporting scope is the extent to The first observation is that solutions to
which its sharable learning components are problems like integration and control of
general. The more a component can learn multiple learning components depend as much
about, the more targets are possible. on the domain as they do on generic
Generality depends on how the component is components. This is borne out in the task
integrated with other components in the analysis, in the need for a strategy selection
architecture. method (page 5). Here the perfunctory

treatment of this method hides many of the
Chunking, for example, is integrated with problems of getting the other methods to
Soar's control strategy, universal subgoaling perform and learn together, but more detailed
(Laird, 1984). In universalsubgoaling, agap task analysis would help define these
or complexity in performance knowledge problems and guide solutions. General
prompts the architecture to set a subgoal. solutions to these hard problems may emerge
When problem-solving achieves the subgoal, only through pursuit of broad learning scope
chunking captures the element of knowledge, on a variety of domains.
whether compiled from knowledge elsewhere
in the system or brand new (Newell, 1990). The second observation is that sharable
Thus, although chunking has only one learning components are potentially better at
architectural target (production memory), it enabling great scope than special-purpose,
has in principle an unbounded number of hardwired implementations of learning
performance-knowledge targets. So far, it has algorithms. Relative to a domain-specific
been applied (in different systems) to measure of learning scope, the variety of
instruction taking (Huffman, 1991), induction generic learning algorithms in a system is a
and knowledge-level learning (Rosenbloom secondary issue; as few as one might do to
and Aasman, 1990; Miller and Laird, 1991), achieve great scope relative to the domain at
and integration of multiple sources of hand.
knowledge in natural language understanding
(Lehman et al, 1991), as well as speedup These two observations lead to the following
learning (Laird et al, 1986; Tambe, 1991). (A hypothesis: A direct and comparatively low-
summary of references for varieties of overhead way to face hard problems in
learning in Soar appears in the introduction to multistrategy learning, such as control and
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integration of learning components, is to Development Center, Aeronautical Systems
pursue broad learning scope for specific Division (AFSC), U S Air Force, Wright-
domains within architectures, guided by Patterson AFB, OH 45433-6543 under
comprehensive task analysis. Contract F33615-90-C-1465, Arpa Order No.

7597. The research was also supported in part
8, Snmmary by the Natural Sciences and Engineering
Broad learning scope involves modifying a Research Council of Canada. The views and
variety of bodies of performance knowledge. conclusions contained in this document are
Two qualities of scope are density and those of the author and should not be
diversity. Density measures the degree to interpreted as representing the official
which learning pervades a system. Diversity policies, either expressed or implied, of
measures the degree to which learning covers DARPA, the U S Government, or the
the kinds of learning afforded by the domain. Government of Canada.
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Abstract isfactorily complete performance tasks.

This paper introduces the concept of multi- The original idea behind multisource learn-
source learning. It demonstrates how a multi- ing was to permit knowledge sources, which
source learner can be used as a framework were themselves independent learning ele-
for multistrategy learning. A variation of the ments, to contribute their knowledge to a
PAC model of learning correctness called knowledge base. It was envisaged that the
PAC-Error identification is defined and knowledge base would contain multiple tar-
shown to be suitable for multisource learn- get concepts and the learning elements could
ing. An algorithm for PAC-Error identifica- be used to build ditffrent parts of the knowl-
tion is developed for a knowledge base o1 edge base. Each learning element could also
definite clauses. It is shown that PAC-Error
identification is effective in integrating def implement a different strategy. For example.
nite clauses that have been contributed from an explanation based learner could be used to
several sources. This framework can be used improve efficiency, an abductive learning
as the basis of a multistrategy learner which element would contribute new, plausible
can produce hypotheses with small error. clauses and an inductive learning element

could construct new clauses from examples.
Keywords: Multistrategy Learning

Multisource Learning For our purposes we assume that the knowl-
PAC Learning edge base is a set of definite clauses.

1 Introduction A multisource learner must select those
clauses from the knowledge base which

A multistrategy learner combines learning result in satisfactory performance across the
strategies to produce effective hypotheses. It' population of tasks. Collectively the selected
each of the learning strategies was imple- clauses are a hypothesis.
mented as an independent entity that contrib-
uted knowledge to a knowledge base then an A major issue in extracting a hypothesis is in
algorithm would be required to integrate this determining a model of correctness. A logic
knowledge to produce an effective hypothe- programming definition could be that all log-
sis. A multisource learner implements such ical consequences of a hypothesis h are in the
an algorithm. Effectiveness is measured as intended interpretation and all elements of
the ability of the resultant hypothesis to sat- the intended interpretation are logical conse-
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quences of h. There are two problems with edge sources (in this case learning elements)
this definition: are beyond the scope of this paper other than

1. The hypothesis can often be more gen- to show the contributions that each learning
eral than what is required. It requires element makes to the knowledge base.
only those clauses relevant to the set of
tasks to be performed. The multisource model is a supervised learn-

2. Exact identification of the hypothesis ing model. Typically, in supervised models,
can be too strong as the criterion for examples are vectors of attribute-value pairs
correctness. A weaker variant may be and the classification indicates whether the
more practical. example is a member of the target concept or

not. The examples given by the teacher in
This paper outlines a model for multisource multisource learning are goal clauses where
learning and presents an algorithm for what a simple boolean flag is not sufficient for
can be termed PAC-Error identification. This classification. Instead the teacher must pro-
algorithm is based on a PAC correctness vide the set of goal clause instances which
model. are members of the target concept.

2 A Model of Learning Example 1: Suppose that a knowledge base is to con-
tain faits about relationships between family :iem-

A multisource learner is shown in Figure 1. bers. A goal clause coukl be (--father(fred. Q. The
instances which are a menber of the target concept

Multiple could be [ffther(fred. ian), father(fredl. janel.
Source

Prformc 3 Correctness of Learning

Element

Traditionally, the ideal for the correctness of
a hypothesis has been that it determine all

Know•edge Ba.e positive members of a target concept to be
positive and negative members to be nega-
tive. The sample complexity for this task can

Knowledge Knowledge be large. No matter how many examples are
SourX I o * *0 Source N used to derive a hypothesis an example can

Figure I be presented which invalidates the hypothe-
Its knowledge base contains a set of definite sis.

clauses. Each knowledge source independ-
ently contributes definite clauses to the Probably approximately correct (PAC) learn-
knowledge base. The multisource learner ing (Valiant. 1984)permits a probabilistic
accepts tasks in the form of classified gioal characterization of a hypothesis. After n

clauses from the teacher. The aim of the mul- examples the probability of being presented

tisource learner is to extract a set of definite with an example that is inconsistent with the

clauses from the knowledge base that satis- derived hypothesis is less than an error

factorily (within the constraints of the PAC threshold e with a probability 1 - S. The liter-

model) solve the tasks given by the teacher. ature contains many results for learning
classes of hypotheses (Kearns, 1989).

In the case of multistrategy learning the
knowledge sources implement various learn- In multisource learning, as described in this

ing strategies. The details of these kn,)wl- paper. the hypothesis class H is the power set
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of the set of definite clauses in the knowl- cally follow from h.
edge base. A PAC learning algorithm would
require that a hypothesis be identified from
this set that has error less than e with high T.
confidence. Clearly, for multisource learning,
it is not always possible to find such a
hypothesis in H because H is dependent on hg
the clauses available in the knowledge base.
For multisource learning the hypothesis
should have the minimal error in the set of Figure 2
hypotheses. The multisource learner, Four probability regions are defined:

described in this paper, performs what can be False positive region (FP): Denotes the set

termed PAC-Error identification where it of instances that are in ha but not in Tu.

returns a hypothesis h that with confidence I Let FP-probability be the sum of the

- 8 has an error probability in the interval [e - probabilities of the instances in this

d, E + d]. The constant d determines the region.

closeness with which the error is to be True negative region (TN): Denotes the set

approximated. Ideally the hypothesis h has of instances that are not in ha and not in

the smallest E in H. Tu. Let TN-probability be the sum of the
probabilities in this region.

4 Probability Regions True positive region (TP): Denotes the set
of instances that are in hu and Tu. Let TP-

A goal clause, g, permits several instances1. probability be the sum of the probabili-Each goal clause has a set of instances which ties in this region.

are members of the target concept. Denote False negative region (FN): Denotes the set
this set by Tg. A hypothesis, h, determines of instances that are not in ho but are in
the set of goal instances, h,, that logically fol- T. Let FN-probability be the sum of
low from it. a probabilities in this region.

Each goal instance has a relative probahility The error probability of a hypotheses h is the

defined to be the probability of its parent sum of the FP-probability and the FN-proba-

goal divided by the number of instances pos- bility.

sible for the parent goal. The total probability
of a goal instance is the sum of relative prob- Figure 3 shows the probability regions across
abilities of all its parent goal clauses.

(TN) U
Figure 2 shows the universe of instances of TU
those goal clauses available to the teacher (rP) (F)

and the relationship between Tg and h.. (N)

Let Tu be the set of all goal instances from U
that are members of the target concept and hu Figure 3
be the set of all instances from U that logi- There are two observations about these prob-

ability regions that aid in the development of
I. A ground instance is derived by substituting a learning algorithm:
constants for all variables in the goal claus. lFr I. The deletion of a clause can result in the
this paper assuzre all instances are -,und.
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transfer of TP-probability to FN-proba- The value z&2 is the value of the standard-

bility and FP-probability to TP-proba- ized normal variable below which there
bility. is an area of &/2.

2. The addition of a clause can result in the Theorem 2: if 3 is used as an estimate of gt
transfer of FN-probability to TP-proba- we can be (1 - 8)100% confident that the
bility and TN-probability to FP-proba- error will be less than a specified amount
bility. d when the sample size is:

Z 2•)

5 Determining Confidence in the n = ) 2

Error
Example 2: Suppose that a sample of 40 examples was

Consider a population of examples which are taken ftom the population of examples. Ten of these

either classified as positive or negative with examples are incorrect. The sample standard devia-

respect to some target concept. What is the tion s is 0.1923. Assuming that s accurately estimates

ythat a randomly chosen example a then the number of examples required such that the

probabilityn tly asrifdomly aho thesis difference between the sample mean and the truewill be incorrectly classified by a hypothesis mean is less than 0.01 with confidence 0.95 is:

h. This is the error rate for the hypothesis h.

2

The error rate for a hypothesis h can be n= ( ) = 1421

approximated by sampling. Suppose that n
examples are chosen at random from the The sample mean is the error rate.

population. Let Xi be 0 if example i is cor- These confidence calculations apply equally
rectly classified and 1 otherwise. Each Xi is a t case where each Xi has an error value
random variable and <X1, X2 ,. -Xn> is a in the range [0, 1]. This is the case for goal
sample of the population. The sample mean clauses. Each goal instance of a goal clause g
is X. The Xi are independent and identically has a value which is l/(# instances of g). This
distributed. value assumes that each instance of a goal

clause is equally important. The error value
The expected probability of error istes for the goal clause is the sum of values of
of the probabilities of incorrectly classified those goal instances in h A Tg (the symmet-
examples across the population. This mean cdfene)Thexctdvleorhi
can be estimated and a confidence limit for it rcdfeec) h xetdvlefrti
can be destimated andough samc d limt f error value gives the error rate across goal
can be determined through sampling, clauses. The error rate can be interpreted as

the probability that an arbitrary goal clause g
Assume that n > 30 and the estimate of wl aeisacsi gnti 5 o

standard deviation s has inconsequential instances inihn not in not

error with respect to o. The distribution of i

the sample mean X is approximately normal. 6 PAC-Error Identification
Two theorems are useful in this case (Wal-
pole et. al., 1978). The algorithm presented here performs PAC-

SiError identification of a hypothesis h Q C
Theorem 1: If x is used as an estimate of p, where C is the set of clauses available in the

we can be (1 - 8)(1)0% confident that knowled-e base.
error will be less than

Z6/2 Roughly, the algorithm calculates the TP. FP,
FN and TN probabilities with h = C. It main-
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tains sufficient information to determine all of Rp by vsi.
probabilities of any h' e H. A hill-climbing • If gi aT. increment FP by v~i. Also incre-

search is applied to obtain a local optimum meot the FP of each cLai. in R.i and he FP

of e and the final hypothesis hk is returned as oRci b - in t b(e) For eacha ti e Tg - h. inrmn FN by vti.
the result. The required information includes 5. Divide TP, FP, FN and TN by the sample count

the TP and FP probabilities of each clause n.
and the set of refutation sets (a refutation set 6. Perform PAC-Efrct-Ident (TP, FR FN, TN, h).
is the set of clauses involved in a refutation
of a goal instance). Each iteration of the It must be noted that when maintaining prob-
algorithm deletes a clause until no further abilities for clauses and refutation sets only
deletions improve the quality of the hypothe- the probabilities TP and FP have any mean-
sis. A sequence of hypotheses is derived: ing.

((h = h1 ),h 2,... Ad) PAC-Error-Ident(TP, FP, FN, TN, h)

Each element hi in the sequence has less 1. Let i= 1.
error and one less clause than its predecessor. 2. Let hi = h.

Each element hi has values for TP, FP, FN 3. Let TPk be the TP value of clause Ck.4. Let FPk be the FlP value of clause Ck.
and TN. The resultant hypothesis hk is 5 Let rror be FP vau or clause Ck.5. Let Emrrok be F~k - "T~k fior clause Ck.
returned with its error probability F_ 6. Let Cj e hi be the clause with the highest error

value En't)rj for all j.

The algorithm has two major components: 7. Perform until no clause Cj C hi has
determining region probabilities with the Errorj a 0.
desired confidence (ContThresh) and identi- (a) For each claust C, e hi where r * j and Ci
fying the clause set that has small error participates %in a refutation with Ci:

(PAC-Error Ident). • Subtract the TP-probability of every com-
mon refutation from the TP-probability of
clause Cr

ConfThresh(8, d) • Subtract the FP-probability of every corn-
1. Randomly select m a 30 goal clauses, calculate mon refutation from the FP-probability of

the error of each and find the sample standard clause C.
deviation s. Calculate the number of samples n (b) Let TP = TP -TPi
required to obtain the necessary confidence I - (c) Let FP = FP - Tpi
8 for the interval size 2d. (d) Let FN = FN + TPj

2. Initialise the region values2 TR FN, FP and TN (e) Let TN = IN + FPj
to 0. ( Let i = i + 1.

3. Let h be the set of clauses in the k-nowledgc base. (g) Let hi = hi.! - [Cj)
4. Perform n times: (h) Let Cj e hi be the clause with the highest

(a) Accept a classified goal clause fromn the error value Em)rj for allj.
teacher. T, is given. 8. Return hi and £ = FP + FN.
(b) Derive the set of goal instances Ih,. implied

by h. Retain the refutation set R;, of every goal 7 Experimental Work
instance 

i.

(c) Calculate the value of each goal i71tace m e
Let this value be denoted by v.ry

(d) For each goal instance, gi e I:
If gi E Tg increment TP by vi. Also incre- Consider the family tree given in Figure 4.

ment the TP of each clause in R,,i uid die TP Assume that the multistrategy learner must

learn the relationships that hold in this tree. It

2. Region values only become probalilitiuis after is assumed that a language is pre-defined for
division by the sample count. n.
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definite clauses and goal clauses. instances of this goal clause but there should be two
(ann and william). The FN-value is 2f7, the FP-value

eme is 0, the TP-value is 0 and the TN-value is 517.

a ce 7.2 Knowledge sources/learning elements

nWilliam• The multisource learner becomes a multist-

Figure 4rategy learner when it permits knowledge
sources to become independent learning ele-

The knowledge base initially contains the sucst eoeidpnetlaigee
Thlow leg e blases: iments. The overall strategy of each learning
following clauses: element is described and its contributions to

sister(X.Y)"'-parent(Z.X).parent(Z.Y). female(X) the knowledge base are given.
sister(jan, fred) 4-
parent(patricia, grace) *- 7.2.1 Learning by abduction
parent(fred. ann)
parent(fred. william) -A learning element performs abduction by
parent(graeme, fred)4-
male(fred) 4-" selecting a clause from the knowledge base

whose head is proven but whose body is yet
For illustration purposes assume that the to be proven and concludes the instance of
population of goal clauses, their classifica- the body. The instantiated elements of the
tions and probability distribution are known body are added to the knowledge base.
and given in Table 1.

Using the initial domain theory, in particular

Goal Clause (g) Tg Prob. the clauses:
idatur(lre-d. X) tather(Ircd. ann) 0.2 sister(X.Y)--parcnt(Z.X).parent(Z.Y), feinaleMX)

father(fred. willi am) sisturojan. fred)

fither(X. jan) father(gratme. jan) 0.3 The unit clauses parent(patricia, jan),
mother(X. fred) mother(patnia. 0.3 parent(patricia, fred) and femaleoan) could

fred) be added to the knowledge base.
sister•jan. X) sistcrqjan. grace) 0.2

_____ sist7jan. fred) 7.2.2 Learning by induction

Table 1: Goal Clause Probabilities

An inductive learner could consider the fol-Here we use the probability distribution to loigeapsfrfthrXY)
analytically determine the sample size. Nor- loigeapsfr th(XY)

-* parent(graeme, grace). male(graeme), female(grace) (+)

mally the probability distribution would no • parent(gracme. jan). male(graeme). femalejan)(+)
be known a priori. The ContThresh algo- , parent(fred. ann). male(fred). female(ann) (+)
rithm would be needed to determine the sam- - parent(patricia. fred). female(patricia). male(fred) (-)

ple size. Two plausible hypotheses that an inductive

The region probabilities are the expected val- learning element might produce to explain

ues of each region value across goal clauses, these facts could be:

Example 3: Consider the goal clause --father(fred. father(X.Y) <- male(X). parent(X. Y)

X). There are seven possible solutions to this goal ificr(XY) <- femaic(Y). parent(X.Y)

clause (all constants in the language i.e. all family

tree members). The value of an, one solution is 1/7. 7.2.3 Learning by discovery

The original tomnain theor" does not entail anY A learning element could be defined to pro-
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duce arbitrary clauses. This learning element The true standard deviation is:
might be constructed analogously to a classi-
fier system (Wilson, 1987) where strong a = JEx(2) + g 2

clauses (reproduction), mixed (crossover)
and modified (mutation). The mean error probability is the expected

value of the error value which is:
Assume that a learning element performs 2 1

discovery and produces the clause: p = E (error) = X0.3+ x03+5x0.2 = 0. 1571

mother(X.Y) <- parent(X.Y) The value of a is 0.1. The sample size
required to estimate the error with d = 0.01

7.3 PAC-Error identification and 8 = 0.05 is 385.

Suppose the knowledge base has gained A typical execution of the ConfThresh algo-
clauses from each of the learning elements rithm would give the probabilities in Table 3
described previously. It contains the follow-
ing clauses: g instance Setf7ttio

fa*ther(fred.ann) Ci 1.(.9.C 12 0.0285 0
(CI) father(X.Y) '-- mnal(X), parent(X. Y)

(C2) father(X.Y) <- (emaL.(X).parent(X.Y) fathcr(1red.william) CI2.CO. 0.0285 0

(C3) .ister(X.Y) (-- parent(.X)nZ.Y). fcaLjX) Iather(pattici.jan) C2.C6.C 13 0 0.0428
(C4) mother(X.Y) *-- paircnt(X.Y) itirpiniite) C.S 048 t

(C5) sister(jain. fvia7r" ed) C4.: 0.042o (X 0

(C6) paftent(patricia. jan) -- mntther(gracine.fred) C4.C _I _ 0 0.042H

(C7) pacnt(patricia, graca) <-- siNLer(jan.graee) C3.C6.C7. 0.0285 0

(C8) parent(patricia. fred) <-- C13

(C9) parmnt(fred. ann) <- sister(lin.fred) C3.C6.C8. 0.0285 0

(CIO) parent(fred. williamn) _-'- C13

(CIt) parcnt(graeme. fred) <--" sisterUjanl.an C3.C6.C13 0 0.028X5
(C 12) male(fred) <-- Table 3:Refutation Sets
(C13) femacl(jan) '-

and Table 4.
This knowledge base h entails the solutions
given in Table 2 with respect to the goal Clause TP FP
clauses: C- o.o057 0

C2 0 0.0428
Goal Clause(g) h, C3 0.057 0.0285

lather(tred. X) tather1tred. ann) C4 0.0428 0.0428
father(fred. william) C5 0.0285 0

father(X. jan) lather(patricia. C6 0.057 0.0713
grace) C7 0.0285 0

mother(X. fred) mnothertpatncia. C8 0.0713 0
graeme) C9 0.0285 0

sister(j,,n. X) sisteran. grav.'e) CM1 0.0285 0
sister(jan. fred) 0 0.0428

- CI 2 0.057 0
Table 2 C13 0.057 0.0713

Table 4:Clause Probabilities

The FN-probability for the hypothesis h is
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0.0428 and the FP-probability is 0.1141. The 5. It shows what probability regions exist
total error is 0.1569. There are four candi- across a universe of instances and how
dates for deletion: C2, C6, Cl and C13. these regions respond to a learning
Each candidate has an FP-probability greater algorithm.
than the TP-probability. This means that if Results using this model have been promis-
this clause were to be deleted, the increase in ing but are in the preliminary stages. It must
FN from TP is smaller than the decrease in be determined how successfully this model
FP. The error probability decreases. scales to a larger domain theory. Exploring

various combinations of the number and
Assume that C2 is chosen for deletion. It types of learning elements would determine
directly decreases FP with no effect on TP. the generality of this model.
FN remains the same but FP for the new
hypothesis h2 is reduced by the FP-probabil- Acknowledgements
ity of C2. The error probability for h2 is
0.0428 + 0.0713 =0.1141. Thanks to Dr. V. Ciesielski and Dr. J Zobel for their

invaluable comments on drafts of this paper.

There are two clauses affected by this dele-
tion. Both C6 and C13 have their FP-proha- References
bilities reduced to 0.0285.

Kearns, M. J., The Computational Complex-
The second iteration has only one candidate ity of Machine Learning, The MIT Press,
for deletion: CII. It also has TP-probability 1989.
of 0 so the error for h3 becomes 0.0428 +
0.0285 = 0.713. Lloyd J. W., Foundations of Logic Program-

ming, Springer-Verlag 1984.
No further clauses can be deleted. The
hypothesis h3 = h - {C2, C I I I is a local opti- Valiant L.G., A Theory of the Learnable,
mum. Communications of the ACM, 27(11),

November 1984.
8 Conclusion

Walpole R. E., Myers R.H., Probability and
This paper has several results: Statistics for Engineers and Scientists, Col-

l. It introduces multisource learning and Her and MacMillan, 1978.
shows that it can be used as a frame-
work for multistrategy learning. Wilson S. W., Classifier Systems and the
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function free definite clauses with nal, 2(3), November 1987.
respect to a population of goal clauses.
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a reformulation of PAC-learning more
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Formulas are based on the central limit
theorem from statistics.



II. Knowledge Base Refinement



69
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Abstract There has been some work on the induction of M-of-
N rules that demonstrates the advantages of this rep-

This paper presents a major revision of the resentation [Spackman, 1988; Murphy and Pazzani,
EITHER propositional theory refinement 1991]. Other work has focused on revising rules that
system. Two issues are discussed. First, we have real-valued weights [Towell and Shavlik, 1992;
show how run time efficiency can be greatly Mahoney and Mooney, 1992]. However, revising the-
improved by changing from a exhaustive ories with simple M-of-N rules has not previously
scheme for computing repairs to an itera- been addressed. Since M-of-N rules are more con-
tive greedy method. Second, we show how strained than rules with real-valued weights, they
to extend EITHER to refine M-of-N rules. provide a stronger bias and are easier to compre-
The resulting algorithm, NEITHER (New hend.
EITHER), is more than an order of magni- This paper presents a major revision of the
tude faster and produces significantly more EITHER propositional theory refinement system
accurate results with theories that fit the [Ourston and Mooney, 1990; Ourston and Mooney,
M-of-N format. To demonstrate the ad- in press] that is significantly more efficient and is
vantages of NEITHER, we present prelimi- also capable of revising theories with M-of-N rules.
nary experimental results comparing it to EITHER is inefficient because it computes a poten-
EITHER and various other systems on re- tially exponential number of repairs for each fail-
fining the DNA promoter domain theory. ing example. The new version, NEITHER (New

EITHER), computes only the single best repair for
1 Introduction example, and is therefore much more efficient.

Also, because it was restricted to strict Horn-Recently, a number of machine learning systems clause theories, EITHER did not produce as accurate

have been developed that use examples to revise an resus as EITHN (a net revasioncsyste
approximate (incomplete and/or incorrect) domain results as KBANN (a neural-network revision system)
theory [Ginsberg, 1990; Ourston --td Mooney, 1990; on the DNA promoter problem [Towell and Shavlik,
Towell and Shavlik, 1991; Danyluk, 1991; White- 1991; Towell and Shavlik, 1992]. Some aspects of the
hall et aL., 1991; Matwin and Plante, 1991]. Most promoter concept fit the M-of-N format, since there

e strict are several potential sites where hydrogen bonds canof these systems revise theories composed of fombewetteDArniapoei;iteog

if-then rules (Horn clauses). However, many con- of these bod f prativit cnour.
cepts are best represented using some form of par- of th e mpts fo per tivity foccur.
tial matching or evidence summing, such as M-of- EITHER attempts to learn this concept by forminga separate rule for each potential configuration by
N concepts, which are true if at least M of a set r fo

of N specified features are present in an example. deleting different combinations of antecedents from
the initial rules. Since a combinatoric number of

*Supported by the NASA Graduate Student Re- such rules is needed to accurately model an M-of-N
searchers Program under grant number NGT-50732, the concept, the generality of the resulting theory is im-
National Science Foundation under grant IRI-9102926, paired. NEITHER, however, includes the ability to
and a grant from the Texas Advanced Research Program g
under grant 003658144. This paper was originally pub- generalize a rule by lowering the threshold on an M-
lished in the proceedings of the Thirteenth International of-N rule. Including threshold changes as an alterna-
Joint Conference on Aritficial Intelligence. tive method for covering misclassified examples was
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easily incorporated within the basic EITHER frame- * -b.
work. b .- d e

To demonstrate the advantages of NEITHER, we b b- * hApresent experimental results comparing it to EITHER a . •/

and various other systems on refining the promoter a .- A
domain theory. NEITHER runs more than an order of d "- d a f I

magnitude faster than EITHER and produces a sig- - hk&

nificantly more accurate theory with minor revisions 9 O-- q mh I J k I * a a p q
that are easy to understand. 1 -•p q

2 Theory Revision Algorithm .emw.b: kL tq miO k.L k.m. .p am..

2.1 The EITHER Algorithm a a a a

The original EITHER theory refinement algorithm b Ab A s b A b A
has been presented in various levels of detail in
[Ourston and Mooney, 1990; Ourston and Mooney, I I I I I I I i
in press; Ourston, 1991]. It was designed to re- d f d g a a I

pair propositional Horn-clause theories thatre am /e \ A A 4%. A A A A A%,
ther overly-general or overly-specific or both. An h I n hi I eq p m,
overly-general theory is one that causes an example
(called a failing negative) to be classified in cate-
gories other than its own. EITHER specializes exist- Figure 2: Partial proofs for unprovable positive ex-

ing antecedents, adds new antecedents, and retracts ample. Unprovable antecedents are shown with dot-

rules to fix these problems. An overly-specific the- ted lines.

ory causes an example (called a failing positive) not
to be classified in its own category. EITHER retracts Figure 1. There are three basic steps. First, all pos-
and generalizes existing antecedents and learns new sible repairs for each failing example are computed.
rules to fix these problems. Unlike other theory re- Next, EITHER enters a loop to compute a subset of
vision systems that perform hill-climbing (and are these repairs that can be applied to the theory to
therefore subject to local maxima), EITHER is guar- fix all of the failing examples. This subset is called
anteed to fix any arbitrarily incorrect propositional a cover. Repairs are ranked according to a benefit-
Horn-clause theory [Ourston, 1991]. to-cost ratio that trades off the number of examples

EITHER Main Loop covered against the size of the repair and the number
of new failing examples it creates. The best repair

Compute all repairs for each example is added to the cover on each iteration. Lastly, the
While some examples remain uncovered repairs in the cover are applied to the theory. If the

Add best repair to cover set application of a repair over-compensates by creating
Remove examples covered by repair new failing examples, EITHER passes the covered ex-

end amples and the new failing examples to an induction
Apply repairs in cover set to theory component.1 The results of the induction are added

as a new rule when generalizing or as additional an-
NEITHER Main Loop tecedents when specializing.

While some examples remain The time consuming part of this algorithm is the
Compute a single repair for each example first step where all repairs for a given failing example
Apply best repair to theory are found. Figure 2 illustrates this process for theory
Remove examples fixed by repair generalization where EITHER is searching for leaf-

end rule2 antecedent retractions to correct failing posi-
tive examples. The upper half of the diagram shows
an input theory both as rules (on the left) and as

Figure 1: Comparison of EITHER and NEITHER al- 1EITHER uses a version of ID3 [Quinlan, 1986] for its
gorithms. induction.

2 A leaf rule is a rule whose antecedents include an
The algorithm used by EITHER for both general- observable or an intermediate concept that is not the

ization and specialization is shown in the top half of consequent of any existing rule.
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Generalization Specialization
change resulting rule b c bc change resulting rule b c be

orig. rule a - 2 of (b,c) N N Y orig. rule a - 1 of (b,c) Y Y Y
threshold -1 a - I of (b,c) Y Y Y threshold +1 a - 2 of (b,c) N NI Y

delete b a -- c N Y Y delete rule none N N N

Table 1: Comparison of Revisions.

an AND-OR graph. The lower half of the diagram tion calculations for the example would begin at the
shows a hypothetical failing positive example and root of the graph, recursively calling nodes b and
its partial proofs.3 From these proofs there are four c. Retraction for node b then recurses on nodes d
possible repairs which will fix the example: retract and .. When the recursion returns back to node
h,j a; retract h,j,o,p; retract k,a; retract k,o,p. b a choice must be made between the results from
Theory specialization follows a similar process to re- nodes d and * because node b is an OR node. Since
turn sets of leaf-rule retractions which fix individual the latter requires fewer retractions, it is chosen as
failing negative examples. the return value for node b. This process continues,

resulting in a final repair: retract k,m.
2.2 Speeding Up EITHER Note that this algorithm is linear in the size of the

We have recently implemented a new version of theory. No node is visited more than once, and the
EITHER (NEITHER) that takes a different approach, computation for choosing among potential retrac-
as shown in the bottom half of Figure 1. Two tions must traverse the length of each rule at most
new algorithms form the basis for the difference once. The final repair is also minimum with respect
between EITHER and NEITHER. First, calculation to the various choices made along the way; it is not
of repairs is now achieved in linear time. Sec- possible to find a smaller repair that will satisfy the
ond, all searches through the theory (for deduction, example. This new algorithm thus trades the corn-
antecedent retraction and rule retraction) are op- plete information available in the partial proofs for
timized in NEITHER to operate in linear time by speed in computation.
marking the theory to avoid redundant subproofs.
NEITHER abandons the notion of searching for all 2.3 Adding M-of-N Rules to NEITHER
partial proofs in favor of a greedy approach which With M-of-N rules, there are six types of revisions
rapidly selects a single best repair for each example. that can be made to a theory. As before, antecedents
The three steps of the old EITHER algorithm can may be deleted or rules may Le added to generalize
then be integrated into a single loop (see Figure 1). the theory, and antecedents may be added or rules

To illustrate how repairs are computed in linear deleted to specialize the theory. The two new revi-
time, refer again to Figure 2. Rather than comput- sions are to increase or decrease the threshold: de-
ing all partial proofs, NEITHER works bottom-up, creasing generalizes a rule and increasing specializes
constructing a single set of retractions. When mul- it.
tiple options exist, NEITHER alternates between re- To incorporate these two new revisions, NEITHER

turning the smallest option and returning the union must be changed in four places. First, the com-of the options, depending whether the choice in- putation of a repair for each failing example must
volves an AND or OR node. For generalization, take thresholds into account. For generalization, one
retractions are unioned at AND nodes because all need only retract enough antecedents to make the
unprovable antecedents must be removed to make rule provable; there is no need to retract all false
the rule provable. At OR nodes, only the smallest antecedents if the rule has a threshold. For exam-
set of retractions is kept since only one rule need pie, if the rule for e in Figure 2 had a threshold of
be provable. For specialization, these choices are re- 1 there would be no need to retract k to prove this
versed. Results are unioned at OR nodes to disable rule. A similar accounting for thresholds is required
all rules which fire for a faulty concept. At AND for computing rule deletions for specialization. Note
nodes, the smallest set of rule retractions is selected that during generalization the threshold of each rule
since any single failure will disable a rule. from which antecedents are retracted must be de-

As an example, in Figure 2 the antecedent retrac- creased by the number of antecedents retracted to
3A partial proof is one in which some antecedents account for the smaller size of the rule.

cannot be satisfied. Second, NEITHER must compute threshold re-
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pairs. Calculating threshold changes can be done [ example features po&. example Fneg. example
in conjunction with the computation of antecedent b, c, d b, -,c, d b, c, -,d
and rule deletion repairs since it is directly related ori-g. rule pos. example neg. example
to how many of antecedents of a rule are provable. a .- 1 of (b,) Y Y
For generalization, we change the threshold to the add to rule pos. example neg. example
number of antecedents which are provable. In spe- Ia ,-- of (b,€,d)J Y I Y
cialization, we set the threshold to one more than a_+_1of________

the number of provable antecedents. split rule pos. example neg. example

Third, a mechanism must be provided for select- X +- 1 of (b.c) Y Y

ing between a threshold change and a deletion. Ef- a 4-- X,d Y N

fectively, this amounts to deciding which type of re- Table 2: Induced Antecedent Addition.
vision to try first. The philosophy used in NEITHER
is to try the most aggressive changes initially in the
hopes that the resulting repair will cover more ex- suits of induction as the new rule's antecedent list.
amples. If the repair creates new failing examples,
the less ambitious repairs are tried in turn with in- 3 Experimental Results
duction used as a last resort. During generalization,
more radical repairs are those which create more Experimental Design

general rules (i.e., rules which can prove more ex- For the purposes of this paper, the resulting algo-
amples). In specialization, the opposite is true. As rithm is labeled NEITHER-MOFN. We tested both
with EITHER, if all changes result in new failing ex- NEITHER and NEITHER-MOFN against other clas-
amples, the algorithm falls back to induction to learn sification algorithms using the DNA promoter se-
new rules or add new antecedents. quences data set [Towell et al., 1990]. This data

Table 1 compares equivalent threshold and dele- set involves 57 features, 106 examples, and 2 cate-
tion changes for generalization and specialization. gories. The theory provided with the data set has
The columns labeled with b, c and bc indicate an initial classification accuracy of 50%. We selected
whether the corresponding rule will conclude a when this particular data set because EITHER performed
just b, just c or both b and c are true. Note that in poorly on data sets best modelled using M-of-N
both cases, the threshold change results in a more rules. In addition to testing EITHER, NEITHER
general rule. This means that threshold changes and NEITHER-MOFN, we ran experiments using
should be tried before antecedent deletions during ID3 [Quinlan, 1986], backpropagation [Rumelhart et
generalization, but tried after rule deletions during al., 1986] and RAPTURE [Mahoney and Mooney, in
specialization, press] (a revision system based on certainty factors).

Fourth and finally, the induction component of The experiments proceeded as follows. Each data
NEITHER must be altered slightly to accommodate set was divided into training and test sets. Training
threshold rules. When the application of a repair sets were further divided into subsets, so that the al-
causes new failing examples to occur, NEITHER re- gorithms could be evaluated with varying amounts
sorts to induction as did EITHER. Tlw result of the of training data. After training, each system's accu-
induction cannot, however, simpli ,e • ded to the racy was recorded on the test set. To reduce statisti-
theory as before. Table 2 illustr - ,- e problem. cal fluctuations, the results of this process of dividing
The original rule shown can be useu w prove both the examples, training, and testing were averaged
the positive and negative examples, and deleting this over 25 runs. The random seeds for the backpropa-
rule or incrementing its threshold only prevents the gation algorithm were reset for each run. Training
positive example from being proved. Assume that time, and test set accuracy were recorded for each
induction returns a new feature, d, which can be run. Statistical significance was measured using a
used to distinguish the two examples (i.e., d is true Student t-test for paired difference of means at the
for the positive example but false for the negative 0.05 level of confidence (i.e., 95% certainty that the
example). Because the original rule has a thresh- differences are not due to random chance).
old, adding d directly will still allow both examples 3.2 Results
to prove the rule. This problem remains even if
one tries to increment the threshold in addition to The results of our experiments are shown in the three
adding d. Instead, the rule must be split by renam- graphs of Figures 3, 4 and 5. Figure 3 compares
ing the consequent of the original rule, and creating the learning curves of the systems tested, show-
a new rule with the renamed consequent and the re- ing how predictive accuracy on the test set changes
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3.3 Discussion while NEITHER actually produces a slight reduction.

Many of our expectations were borne out by Therefore, NEITHER's revised theories are less com-

the experimental results. Both NEITHER and plex and presumably easier to understand. Finally,

NEITHER-MOFN ran more than an order of mag- unlike KBANN, NEITHER is guaranteed to converge

nitude faster than EITHER due to the optimized al- to 100% accuracy on the training data.

gorithms discussed in section 2. NEITHER-MOFN's RAPTuRE [Mahoney and Mooney, 1992] uses a

increase in accuracy was also expected since the combination of symbolic and neural-network learn-

new algorithm is able to concentrate on making ing methods to revise a certainty-factor rulebase

M-of-N revisions directly. Also, the fact that [Buchanan and E.H. Shortliffe, 19841. Consequently,

NEITHER-MOFN generates less complex theories it lies somewhere between NEITHER and KBANN

is not surprising, again because it can directly on the symbolic-connectionist dimension. As illus-

modify threshold values rather than create new trated in the results, its accuracy on the prmoter

rules. In short, by adding one more operator problem is only slightly superior to NEITHER's.

to the generalization and specialization processes, However, its real-valued certainty factors make its

NEITHER-MorN is able to accurately revise a the- rules more complex.

ory known to be difficult for symbolic systems, with- 5 Fture Work
out having to sacrifice the efficiency of a symbolic
approach. Finally, the most comparable learning- The current version of NEITHER needs to be en-
curve results from [Towell, 1991] would indicate that hanced to handle a number of issues. We need
KBANN's accuracy in the promoter domain is about to incorporate a number of advanced features from
the same as NEITHER-MOFN's. EITHER, such as constructive induction, modifica-

tion of higher-level rules, and the ability to handle
4 Related Work numerical features and noisy data. Also, we could

to extend our methods to handle negation as fail-
Several researchers have developed methods for in- ure and incorporate the ability to handle M-of-N
ducing M-of-N concepts from scratch. CRLS [Spack- rules into first-order theory revision (Richards and
man, 1988] learns M-of-N rules and out-performed Mooney, 19911. Finally, we need to perform a more
standard rule induction in several medical domains, comprehensive experimental evaluation of the sys-
ID-2-of-3 [Murphy and Pazzani, 19911 incorporates tern.
M-of-N tests in decision-tree learning and out-
performed standard decision-tree induction in a 6 Conclusions
number of domains. Both projects clearly demon-
strate the advantages of M-of-N rules. This paper has presented an efficient propositional

SEEK2 [Ginsberg et al., 19881 includes operators theory refinement system that is capable of revising

for refining M-of-N rules; however, its revision pro- M-of-N rules. The basic framework is a modification

cess is heuristic and it is not guaranteed to produce of EITHER [Ourston and Mooney, 1990]; however,

a revised theory that is consistent with all of the the construction of partial proofs has been reduced

training examples. NEITHER uses a greedy covering from exponential to linear time and a method for

approach to guarantee that it finds a set of revisions revising the thresholds of M-of-N rules has been in-

that fix all of the misclassified examples in the train- corporated. The resulting system runs more than an

ing set. Also, unlike NEITHER, SEEK2 cannot learn order of magnitude faster and produces significantly

new rules or add new antecedents to existing rules. more accurate results in domains requiring partial

KBANN [Towell and Shavlik, 1992] revises a the- matching, such as the problem of recognizing pro-

ory by translating it into a neural network, using moters in DNA.

backpropagation to refine the weights, and then Acknowledgements
retranslating the result back into symbolic rules. Special thanks to Chris Whatley for his help imple-
NEITHER'S symbolic revision process is much more menting NEITHER.
direct and, from all indications, significantly faster.
Although KBANN'S results are referred to as M-of-N References
rules, they actually contain real-valued antecedent
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Abstract Figure 1 shows the relationship between the
deductive closure DC of the imperfect KB of

This paper presents an integrated heuristic ap- an expert system and the set of true facts in
proach to knowledge base refinement which the application domain (TC):
is viewed as a supervised validation of • DC and TC are "crisp" sets, with cleanly
plausible reasoning. The approach integrates defined borders. That is, the system has an
multistrategy learning based on multitype algorithm for testing the membership of a
inference, active experimentation, and guided statement in DC, and presumably a human
knowledge elicitation. One of the main expert can perform a similar test on TC.
features of this approach is that once the
knowledge base has been refined to deduc- DC r) TC represents the set of facts which
tively entail a new piece of knowledge, it can are deductively entailed by the KB and are
be easily further refined to deductively entail true. This shows that there is useful and
many other similar pieces of knowledge. correct knowledge encoded into the facts

and the deductive rules of the KB.
Keywords: multistrategy learning, knowl- DC - TC represents the set of facts which
edge acquisition, plausible reasoning are deductively entailed by the KB but are

false. This shows that there are errors in the

1. Introduction set of facts and deductive rules.

An expert system consisting of an incomplete TC - DC represents the set of facts which
and epertiaslysteconsistinowledge ofansinc e (are true but are not deductively entailed byand partially incorrect knowledge base (KB), the KB. This shows that the set of facts and

and of a deductive inference engine, suffers deductive rules is incomplete.

from two major limitations:

"* it is not able to solve some problems from
its domain of expertise (because the KB is
incomplete);

"* the solutions proposed might be incorrect
(because the KB is partially incorrect).

The set of problems which such a system
could solve is the deductive closure of the
knowledge base (DC). In the case of a
theorem prover, it is the set of facts which
could be deductively inferred from the KB. Figure 1: The relationship between

That is, DC={I:KB• I } DC and TC.

where "h" means deductive entailment. The goal of KB refinement is to improve the
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knowledge base so that DC becomes a good Let us consider, for instance, the rule

approximation of TC. As a result, the KB
would become an almost complete and V,[P(x)-'+Q(x)].
correct one, and the expert system would be If one knows that P(a) is true, then one may
able to correctly solve most of the problems deductively infer Q(a):
from its domain of expertise.

Many of the current KB refinement systems {P(a),V,[P(x)-- Q(x)]} 1 Q(a)
such as ANA-EBL (Cohen, 1991), CLINT If one knows that Q(a) is true, then one may
(De Raedt and Bruynooghe, 1993), DUCTOR If one knows that Q) seheone may
(Cain, 1991), EITHER (Mooney and Ourston, abductively (Pople, 1973; Josephson, 1991)
1993), FORTE (Richards and Mooney, 1993), infer P(a):
SEEK (Ginsberg, Weiss, and Politakis, 1988), {Q(a),V.[P(x)--Q(x)]} • P(a)
try to partially generalize the KB so as to
cover more of TC, and to partially specialize If one knows that P(a) is true, and b is similar
it, so as cover less of DC - TC. In the case of to a, then one may analogically (Carbonell,
a Prolog-like KB, this is accomplished by 1986; Gentner, 1990; Kedar-Cabelli, 1988;
generalizing and/or specializing some of the Kodratoff, 1990; Winston, 1980) infer Q(b):
rules, as well as by introducing new facts into
the KB, and/or removing other facts. [ P(a), 1
In this paper, we are also addressing the j V1[P(x) -+ Q(x)], ' Q(b)
problem of correcting and extending DC so as ("b similar' to a')
to better approximate TC. However, our
approach, as opposed to the approaches cited Another way to make plausible inferences is
above, brings a new set into play, the to use weaker correlations between
plausible closure of a KB, and proposes a knowledge pieces (e.g. related facts,
different perspective to the KB refinement determinations, dependencies, "A is like B"
problem. statements, etc.).
2. The plausible closure of the KB Let us consider, for instance, that the KB

contains the following related facts (each set
We are assuming that the initial incomplete describing an object):
and partially incorrect KB consists of facts P(C) A Q(C) A R(c)
and rules expressed in first-order logic.
However, the rules are not restricted to be P(d) A Q(d) A S(d)
deductive. They might also be weaker P(e) A Q(e)
correlations as determinations (Davies and
Russell, 1987; Russell, 1989), mutual Then one might empirically generalize
dependencies (Michalski, 1993), etc. This is (Mitchell, 1978; Michalski, 1983; Quinlan,
so for allowing the introduction of all sorts of 1986) these sets of facts to the rule
relevant knowledge into the KB.

The plausible closure of the KB (PC) is de- V•[P(x)-- Q(x)]
fined as the set of problems which a plausible and might deductively use this rule with the
inference engine could solve. In the case of a fact P(a) to predict that Q(a) is also true.
theorem prover, it is the set of facts which Analogical inferences could be made by em-
could be plausibly inferred from the KB. ploying plausible determinations (Russell,

That is, PC = { 1: KB 1J) 1989; Tecuci, 1993). Let us consider, for
instance, the following determination rule

where "I-" means plausible entailment, stating that U plausibly determines V:

One way to make plausible inferences is to U(x,y) >- V(x,z)
use the rules from the KB not only Then one may make the following analogical
deductively, but also abductively or inference:
analogically. U(s,a) A V(s,b) A U(t,a) k V(t,b)
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Another example of plausible inference is the justification trees.
"useful analogical inference", introduced by
Greiner (1988). Let us suppose, for instance, PCTC represents the set of facts which
that the system is told that Q(b) is true, and is are plausibly entailed by the KB and are
given the analogical hint "b is like a", in true.

order to show that KB I" Q(b). That is, * PCr nTC-DC represents the set of true
without this analogical hint, the system is not facts which are plausibly entailed by the
able to show that KB • Q(b). Based on this KB, but are not deductively entailed by the
analogical hint, the system is looking for a KB. Our hypothesis is that this is a
feature of a (e.g. P(a) ) which, if possessed by significantly large set.

b, would allow it to prove KB I Q(b): • TC - PC represents the set of true facts

KB 1= P(a) that are not plausibly entailed by the KB.
Although this set is not well defined, it

KB 1• P(b) expresses the intuition that there are true

KB 1• -,P(b) facts which even a plausible inference en-

[P(b), KBJ 1= Q(b) gine could not derive from the current KB.

As a result of this reasoning P(b) is asserted
into the KB.

Several other types of plausible derivations
based on implications and dependencies are
described in (Collins and Michalski, 1989). CkM"

In order to show that a certain fact, 1, is
plausibly entailed by the KB, a system is not
restricted to making only one plausible
inference. In general, it could build a plausible
justification tree (Tecuci, 1993). A plausible Figure 2: The relationship
justification tree is like a proof tree, except between DC, PC, and TC.
that the inferences which compose it may be
the result of different types of reasoning (not The deductive and plausible closures are two
only deductive, but also analogical, abductive, approximations of truth. In the approach we
predictive, etc.). An example of such a tree is are proposing, we are considering D C as
presented in Figure 5. being an approximate lower bound for TC,

and PC as being an approximate upper bound
One of the main reasons for illustrating the for TC. With this interpretation, the KB
above plausible inferences was to show that, refinement problem reduces to one of
by employing a plausible inference engine, determining the set TC in the plausible space
one could significantly extend the set of defined by D C and PC. More precisely,
problems that could be solved by a system. during KB refinement, DC will be extended

Figure 2 presents our conjecture about the with a significant portion of PC rn TC, and
relationships between the plausible closure of will also be corrected to remove from it most
the KB, the deductive closure of the KB, and of DC- TC. Consequently, as a result of this
the set of true facts in the application domain: process, DC will become a good approxi-

"* PC is a "soft" set, the boundaries of which mation of TC.
are not strictly defined. Indeed, depending Otherwise stated, we propose an approach to
of the number and of the strength of the KB refinement which is viewed as a transfer
different types of plausible reasoning steps of knowledge form the plausible closure to the
in a justification tree for a fact F, the deductive closure.
plausibility of F is higher or lower. In this paper we are proposing a heuristic

"* PC _. DC because the deductive proof method which is an effective way of
trees are special cases of plausible extending DC with a significant portion of
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PC n TC. More precisely, during knowledge ductive closure with new hypotheses, H, so as
refinement, the sets D C and P C are to include a generalization Ig of 1, that is
transformed as follows: {H, KB} f Is

"* DC is extended by acquiring new facts or At the same time, it will extend the plausible
rules, or by generalizing some of the rules; closure of the KB, so as to include more of

"* DC is improved by specializing some of the TC, and might also remove some
deductive rules which could be partially inconsistencies from the deductive closure,
incorrect; reducing the size of the set DC - TC.

- PC is extended and/or improved by If I is not in the plausible closure of the KB,
acquiring new facts or rules, or improving then it will be simply asserted into the KB.
some of the existing rules. This has the effect of extending both DC and

The next section contains a general presen- PC. Indeed, the presence of I in DC may
tation of the proposed KB refinement method. make it possible for the system to show that

other facts (e.g. 11, 12) are deductively or

3. General presentation of the KB plausibly entailed by the KB:

refinement method KB IV 11, but {I, KB}1 11

The KB of the system is assumed to be KB 1k 12, but {I, KBJIJ12
incomplete and partially incorrect. The KB is This also shows that during KB refinement,
improved during training sessions with a PC may grow to include facts from TC - PC.
human expert who provides the system with
new input information L. Each such input I is The main stages of the KB refinement process
an example of an answer that the final expert are presented in Figure 3. They are:
system should be able to generate, that is, I • multitype inference and generalization;
should be in the deductive closure of the fina,
expert system. The goal of KB refinement is * experimentation, verification and repair;
to improve the KB of the system so that to e goal-driven knowledge elicitation.
answer questions as the human expert. In the first stage, the system analyzes the

If an input I is already in the plausible closure input in terms of its current knowledge by
of the KB, then the system will be able to building a plausible justification tree which
make a significant transfer of knowledge demonstrates that the input is a plausible
from the plausible closure to the deductive consequence of the system's current
closure. More precisely, it will extend the de- knowledge.

Human Expert

r New Input

Mu,,yp Hypothesized G €,l rm aai-N_•, Kowledgien e
In'eremuatn.d Knowledge Vertion, Knowledge Knowledge Knowledge
Generalization I. Piecesin Pieces I icitation 74 pieces

DIproved stn Ipoe

owledge w ge Knowledge '... . Knowed

Incomplete and Partially Incorrect Knowledge Base

Figure 3: The main stages of the KB refinement process
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As a result of the analysis of the input via The entire knowledge refinement process is
multitype inferences, new pieces of characterized by a cooperation between the
knowledge are hypothesized (through learning system and the human expert in
analogy, abduction, inductive generalization which the learner performs most of the tasks
and prediction, etc.), and existing pieces of and the expert helps it in solving the problems
knowledge are improved so that the extended that are intrinsically difficult for a learner
knowledge base to entail the input. By (e.g., the credit/blame assignment problem,
asserting these pieces of knowledge into the the problem of new terms) and relatively easy
knowledge base, the system is able to for the human expert.
deductively entail the input. The support for
these new pieces of knowledge is that they 4. Exemplary application domain
allow building a logical connection (the
justification tree) between a knowledge base We will use the domain of workstation
that represents a part of the real world, and a allocation and configuration in order to
piece of knowledge (the input) that is known illustrate this KB refinement method. The
to be true in the real world. expert system to be built has to reason about
Next, the system will generalize the plausible which machines are suitable for which tasks
justification tree, by employing different and to allocate an appropriate machine for

types of generalizations (not only deductive each task.
or empirical, buit also based on analogy and, The initial (incomplete and partially
possibly, on oher types of inferences). By incorrect) knowledge base contains
this, it will generalize the hypothesized information about various printers and
knowledge, so that the resulting knowledge workstations distributed throughout the
base will entail not only the received input I, workplace. A sample of this knowledge base
but also a generalization of itlg is presented in Figure 4. Notice that it

e gcontains different types of knowledge:The generalized plausible justification tree deductive rules, a plausible determination
shows how lg (a generalization cf the input) (Russell, 1989; Tecuci, 1993), facts, and
is entailed by the KB. However, this tree was hierarchies. Each of these knowledge pieces
obtained by making both plausible inferences might be incomplete and/or partially
and plausible generalizations. Consequently, incorrect.
both the tree and the corresponding
knowledge pieces learned are less certain. Let us suppose that the system is told that
One may improve them by performing maclI02 is suitable for publishing
experiments. This is the second stage of the suitable(macII02, publishing)
KB refinement process. During this stage, the and this fact is representative of the type of
system will generate instances of I and will answers it should be able to provide.
ask the user if they are true or false. It will
further improve the hypothesized knowledge 5 Multity
pieces so that the updated KB to deductively pe inference and
entail the instances of Ig which are true and generalization
to reject the ones which are false. The system tries to analyze ("understand")
However, because the KB is incomplete and the input in terms of its current knowledge by
possibly partially incorrect, some of the building the plausible justification tree in
learned knowledge pieces may be incon. ent Figure 5. Such a tree demonstrates that the
(i.e. may cover negative examples). In order input is a plausible consequence of the
to remove such inconsistencies, additional system's current knowledge. The method for
knowledge pieces (which represent new terms building such a tree is presented in (Tecuci,
in the representation language of the system) 1993). It employs a backward chaining
are elicited from the expert, through several uniform-cost search.
consistency-driven knowledge elicitation The tree in Figure 5 is composed of four
techniques. This represents the third stage of deductions, an inductive prediction, and a
the KB refinement process. determination-based analogical implication.
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suitable(X, publishing) : X is suitable for publishing if it runs
runs(X, publishing-sw), communicate(X, Y), ; publishing software and communicates
isa(Y, high-quality-printer). ; with a high quality printer

communicate(X, Y) :- ; X and Y communicate if they are on the same network
on(X, Z), ,on(Y Z).

communicate(X, Y) :- ; X and Y communicate if they are on connected networks
on(X, Z), on(Y, V), connect(Z, V).

isa(X, high-quality-printer) :- ; X is a high quality printer if
isa(X, printer), speed(X, high), resolution(X, high). ; it has high speed and resolution

runs(X, Y) os(X, Z). ; the type of software which a machine could run is largely determined
; by its operating system (":-" means plausible determination)

runs(X, Y) :- runs(X, Z), isa(Z, Y).

os(sun0l, unix). on(sun0l, fddi). speed(sun0l, high). processor(sun0l, risc).
; sun0l's operating system is unix, it is on the fddi network, has high speed and a risc processor
os(hp05, unix). on(hpO5, ethernet). speed(hp05, high). processor(hp05, risc). runs(hp05, frame-maker).

os(macplusO7, mac-os). on(macplus07, appletalk).

os(macII02, mac-os). on(macII02, appletalk).

os(maclcO3, mac-os). runs(maclc03, page-maker).

on(proprinter0l, ethernet). resolution(proprinterOI, high). processor(proprinter, risc).
on(laserjetOI, fddi). resolution(laserjet0l, high). processor(laserjet0l, risc).
on(microlaser03, ethernet). resolution(microlaser03, high). processor(microlaser03, risc).
resolution(xerox0l, high). speed(xerox0l, high). processor(xerox0l, risc).

connect(appletalk, ethernet). connect(appletalk, fddi). connect(fddi, ethernet).

proprinter proprinteO l

laserwriter
Smicrolaser microlaser03

rZlaserjet laserjet~l• xerox laseroxe01
xeroxO1

mac . macplus macplus07

vax maclc maclcO3

Sgi znacil macII02

workstation 4 un sun0l
hp hpO5

something op-system unix

software . accounting

spreadsheet mac-write

publishing-sw sw ag-mke
Sprcessor-m --.--- risc frame-maker

fddcisc microsoft-word

fddi
~•5 ethernet

network appletalk

Figure 4: Sample of an incomplete and partially incorrect KB
for the domain of workstation all cation and configuration.
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swtable(macnI2. publishing)

tuDB(TIWCfOZ publishing-sw) oommiunicate(mnacIIO2, proprinteO1) ima(pr teopitO , higb-quality-prinlu)wn •ail2 mk•r) o,• t 1.c..esnet) p ighr)

S i !spccd•proprin•tez high)

deductosoco e dt(appucalk, ethernet) 0inductiveprediction

nuigmacd)03, page-maikm) procc~ssortp~oria, O1. nsc)

Figure 5: A plausible justification tree for "suitable(macIl02, publishing)".

The inductive prediction true (Peirce, 1965), one could assume that all
the inferences from the most simple andprocessor(proprinter01,iisc) -- speed(proprinter0Ihigb) plausible justification tree are correct.

was made by empirically generalizing the With this assumption, the KB is improved by:
facts:s(sun01, -igh,1ou 01i ), onsun0learning a new rule by empirical inductive
processor(sun0O, rise:).generalization:
speed(hp05, high), os(hp05, unix), onjp05, ethernet), speed(X, high) processor(X, risc)

wthe neecsfo the mosstv simplples

processor(hp0o, rise), runs(hp05, frame-maker). plthsthe positioe ees
X=sun01, X-upo5, X=xerox01, X=proprivder0

speed(xerox01, high), resolution(xerox01, high), dering positive exampl ofuthe
processor(xerox01, risc). •discovering positive examples of the
totessre ru. determination rule (which is therefore
to the rule efre)

speed(x, high) :- processor(x, risc) enforced):
runs(X, Y) :~ os(X, Z).and then applying this rule deductively. with the positive examples

An open problem is how to collect the facts to X=maclc03, Y=page-maker, Z=mac-os
be generalized, and what kind of X=macII02, Y=page-maker, Z=mac-os
generalization to look for. One solution which * discovering positive examples for the
we are investigating is based on CLINT's deductive rules used in building the
approach (De Raedt, 1991) of using a plausible justification tree as, for instance:
hierarchy of languages for the rules to be suitable(X, publishing):-
learned. Each language is characterized by a runs(X, publishing-sw), communicate(X, Y),
certain form of the rules to be learned, which isa(Y, high-quality-printer).
suggests the kind of facts to look for. with the positive example

The analogical inference was made by using X=macII02, Y=proprinterOl
the determination rule Therefore, the user merely verifying a

runs(X, Y) :- os(X, Z) statement allows the system to refine the KB
as indicated in Figure 6. by making several justified hypotheses. As aresult of these improvements
While there may be several justification trees KB r suitable(maolI02, publishing)

for a given input, the attempt is to find the
most simple and the most plausible one (Lee, During KB refinement, the rules are
1993). This tree shows how a true fact I constantly updated so as to remain consistent
derives from other true facts from the KB. with the accumulated examples. This is a type
Based on the Occam's razor (Blumer, of incremental learning with full memory of
Ehrenfeucht, Haussler, and Warmuth, 1987), past examples.
and of the general hypothesis used in As mentioned before, the input fact
abduction which states that the best "suitable(maclI02, publishing)" is representa-
explanation of a true fact is most likely to be tive for the kind of answers the final system
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should be able to generate. This means that ating system of "maclcO3" is "mac-os", and
the final system should be a;,., to give other that it runs "page-maker". Because the
answers of the form "suitable(x, y)". It is operating system of "macII02" is also "mac-
therefore desirable to extend DC so as to os", one may infer by analogy that "macIl02"
include other such true facts, but also to could also run "page-maker".
improve DC so as no longer to include false
facts of the same form. on(macc03, mac-os) - simlar. os(maaci02, m•a-<)

While the integration of the fact dr-.
"suitable(macII02, publishing)" into DC was t ,
a costly process that involved multitype -I--
inferences and the determination of the most uns(maclc03, page-maker) nms(macIl02, page-maker)

plausible justification tree, the integration in
(or exclusion from) DC of similar facts is a rim(macHO2, page-maker)
much simpler process which basically _A, -
replicates most of the reasoning involved in analof
the "understanding" of the input
"suitable(macII02, publishing)". This feature og mac-os) mS)

is one of the main strengths of the proposed runs(maclc03, page-maker)
KB refinement method. Figure 6: Inferring
The basic idea is the following one. One "runs(macII02, page-maker)" by analogy.
performs a costly reasoning process to show

that KB • I. Then it computes a general- Let us notice now that the same kind of
ization of that reasoning so as to speed up reasoning is valid for any type of operating
future problem solving which requires a system, and for any type of software, as
similar reasoning. Indeed, such a reasoning illustrated in Figure 7.
process could be generated by simply
instantiating this generalization to the new oS(x1,z ) -4 similar os(X2, Z1)

problem to be solved. I
A simple illustration of this idea is determincs determines

explanation-based learning (Mitchell, Keller, - , l
Kedar-Cabelli, 1986; DeJong and Mooney, nms(X1, Y1) ruf• • ( r2,
1986). In this case, an explanation (proof tree)
of a concept example is deductively gener- runs(X2, Yl)
alized. Different instances of this deductive "04-
generalization demonstrate that other descrip- GENERAUZA TION BASED ON ANALOGY
tions are examples of the same concept. oS(Xi, Z I) os(X2, Z•)

In our method, each inference from the rU=(X, Y1)

plausible justification tree is replaced with a Figure 7: Generalization of the
generalization which depends of the type of reasoning illustrated in Figure 6.
inference, as shown in (Tecuci, 1993). Thus,
the system is performing not only deductive Now, if one knows, for instance, that
generalizations, but also empirical inductive "os(hp05, unix)", "runs(hp05, frame-maker)",
generalizations, generalizations based on dif- and "os(sun0l, unix)", then one may
ferent types of analogies, and possibly, even immediately infer "runs(sun0l, frame-
generalizations based on abduction. To illus- maker)", by simply instantiating the general
trate this, let us consider the analogical impli- inference from the bottom of Figure 7.
cation from Figure 5. The process of making
this inference is illustrated in Figure 6. This might not appear to be a significant
According to the plausible determination rule saving but, in the case of a plausible
"runs(X, Y) :- os(X, Z)", the software which justification tree, one generalizes several such
"armachins(e c) rn is( larl dthesrmned bhits individual inferences and, even morea machine can run is largely determined by its importantly, their interconnection in a
operating system. It is known that the oper- plausible reasoning process. For instance, the
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Figure 8: A generalized plausible justification tree.

generalization of the tree in Figure 5 is once this tree is built, one may draw
presented in Figure 8. The generalization conclusions that are similar to the ones drawn
method is presented in (Tecuci, 1993). from the tree in Figure 5:

The important thing about the general tree in • if the top of the tree in Figure 9 is known to
Figure 8 is that it covers many of the be true, then one may assume that all the
plausible justification trees for facts of the intermediate implications are also valid.
form "suitable(x, publishing)". If, for This reinforces each rule used in building
instance, sunOl is another computer for which the tree with a -ew positive example.
the leaves of the plausible justification tree in • if the top of the tree is not true, then one has
Figure 8 are true, then the system will infer to identify the wrong implication and to
that sunOl is also suitable for publishing, by correct accordingly the KB.
simply instantiating the tree in Figure 8 (see
Figure 9). 6. Experimentation, verification and
Let us mention again that while building the repair
plausible justification tree in Figure 5 was a
difficult problem which required the Building the plausible justification tree from
employment of different types of reasoning, Figure 5 and its generalization from Figure 8
and of determining the simplest and the most was the first stage of the KB refinement
plausible justification tree, the building of the process described in Figure 3. The next stage
tree in Figure 9 was a very simple process of is one of experimentation, verification, and
instantiating the tree in Figure 8. However, repair.

suitable(sunOl, publishing)

deduction

nms(sunOl. publishing-sw) communicate(sun0l, microlaser03) isa(micolaser03, high-quality-printer)

-=-A,.% . deductione_0
isa(frame-mker, publishing-sw) isa(miniolascr03, printcu)

rcsolution(inicrolaserO3. high)
nmns(asunl, frame-maker) on(micrlase)3, ethernet)

o"u• )speed(microlaserO3, high)SoWslMOL fddi) a

os(bpOunix) oossunO1 unix) . eet) inductive prediction
ohp5 ninshp frame-makerni) --TI.

nms(hp05, frame-maker) processor(microlaser03. risc)

Figure 9: An instance of the plausible justification tree in Figure 8,
justifying that sun0l is suitable for publishing.
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The system will generate plausible justifi- corresponds to the plausible closure, and the
cation trees like the one in Figure 9. These plausible lower bound corresponds to the
trees show how statements of the form deductive closure. Of course, this space is
"suitable(x, publishing)" plausibly derive restricted to facts of the form "suitable(x,
from the KB. Each such statement is shown to publishing)".
the user who is asked if it is true or false. The version space in Figure 10 could be
Then, the system (with the expert's help) will in the equivalent form in
update the KB such that it will deductively Fgrepresented in the fal e formental th tre sttemets nd oly tem.igure 11. Note that the facts of the form
entail the true statements and only them. "isa(Q, something)" are always true.
The experimentation phase is controlled by a
heuristic search in a plausible version space suitable(X, publishing)
(PVS) which limits significantly the number
of experiments needed to improve the KB. In plausible upper bound
the case of our example, the plausible version isa(T, something), isa(U, publishing-sw),
space is defined by the trees in Figure 5 and isa(V, something), isa(W, something),
Figure 8, and is represented in Figure 10. isa(X, something), isa(Y, printer),

isa(Z, something), os(Z, T), runs(Z, U), os(X, 1),on(X, V), connect(V, W), on(Y, W),

plausible upper bound processor(Y, risc), resolution(Y, high).
suitable(X, publishing):- plausible lower bound

os(Z, T), runs(7, U), os(X, T), isa(T, mac--os), isa(U, publishing-sw),
isa(U, publishing-sw), on(X, V), isa(V, appletalk), isa(W, ethernet),
connect(V, W), on(Y, W), isa(X, maclI02), isa(Y, printer),
isa(Y, printer), processo5(Y, risc), isa(Z, maclc03), os(Z, T), runs(Z, U), os(X, T),
resolution(Y, high). on(X, V), connect(V, W), on(Y, W),

plausible lower bound processor(Y, risc), resolution(Y, high).
suitable(maclI02, ,ublishing) :- with the positive example

os(maclc03, mac-os), rims(maclcO3, page-maker), T=mac-os, U=page-maker, V=appletalk,
os(macIO2, mac-os), W=ethernet, X=macII02, Y=proprintei~l,
isa(page-maker, publishing-sw), Z=maclc03.
on(macdO2, appletalk), connect(appletalk,ethemet),
on(proprinter0l, ethernet), isa(proprinter01,printer), Figure 11: Equivalent form of the
processor(proprinter0I, risc), plausible version space in Figure 10.
resolution(proprinter0l, high).

Figure 10: The plausible version space (PVS) The version space in Figure 11 serves both
for generating facts of the form "suitable(x,

The plausible upper bound is a rule the left publishing)", and for determining the end of
hand side of which is the top of the general the experimentation phase.
tree in Figure 8, and the right hand side of To generate such a fact, the system looks into
which is the conjunction of the leaves of the the KB for an instance of the upper bound
same tree. The plausible lower bound is a which is not an instance of the lower bound.
similar rule corresponding to the tree in Such an instance is the following one:
Figure 5. This plausible version space
synthesizes some of the inferential suitable(sunOl, publishing)
capabilities of the system with respect to the runs(hp05, frame-maker),
facts of the form "suitable(x, publishing)". os(sun0l, unix),
We call these bounds plausible because they isa(frame-maker, publishing-sw),
are only approximations of the real bounds on(sunOl, fddi),
(Tecuci, 1992). The upper bound rule is connect(fddi, ethernet),
supposed to be more general than the exact on(microlaser03, ethernet),
rule for inferring "suitable(x, publishing)", isa(microlaser03, printer),
and the lower bound rule is supposed to be processor(microlasei03, risc),
less general than this rule. Let us notice that resolution(microlaser03, high).
this version space corresponds to the version which could be written as:
space in Figure 2. The plausible upper bound
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suitablc(X, publishing) utbeXpblsig:
isa(, unix), isa(U, publishing-sw), i*V, sulalepulihig
isa(W, ethernet), isa(X, sun~l), plausible upper bound
isaY, tirlaserOU) isa(Z. lip05), os(Z, TI), isa(T, something), isa(U, publisbing-sw),
fliD5CZ, U), OS(X, T), 00(X, V), CODDCCL(V, W), isa(V, something), isa(W, something).
on(Y, W), processor(Y, risc), resolution(Y, high). isa(X, somnething), isa(Y, printer),

with the positive examnple isa(Z, something), os(Z, 1). runs(Z, U), os(X, T),
T=unix, U=frame-mnaker, V=fddi, W=etbernet, on(X V), connect(V, W), on(Y, W),
X=sun0l, Y--microinseal)3, Z--hpO5. processor(Y, risc), resolution(Y, high).

The corresponding instance of the general plausible lower bound
tree in Figure 8 shows how "suitable(sun~l, isa(T, op-system), isa(U, publishing-sw),
publishing)" is plausibly entailed by the KB i*aV, network), isa(W, ethernet),
(see Figure 9). The user is asked if isa(X, workstation), isa(Y, printer),
"suitable(sun~l, publishing)" is true or false, isa(Z, workstation), os(Z, T), runs(Z, U), os(X, T),
and the KB is updated accordingly. on(X, V), connect(V, W), on(Y, W),
Assuming the user accepted "suitable(sun~l, processor(Y, risc), resolution(Y, high).
publishing)" as a true fact, the KB and the with the positive example
plausible version space are updated as T=mac-os,U=page-maker,V=appletalkW=ethernet,
follows: X=mnacIIO2, Y=proprinter0l, Z--maclc03.
"* the KB is improved so as to deductively T=unix, U=frame-maker, V=fddi, W=ethernet,

entail "suitable(sunO 1, publishing)"; X=sun0l, Y=tnicrolaser03, Z--hpO5.

"* the plausible lower bound of the PVS is IFigure 12: Updated PVS. -
conjunctively generalized to "covert" the
leaves of the tree in Figuie 9. In such a case one has to detect and correct

It has already been shown how the KB is the wrong inference(s), as well as to update
improved (see section 5). The plausible the KB, the general justification tree in Figure
lower bound of the PVS is generalized as 8, and the plausible version space such that:
shown in Figure 12. * the tree in Figure 13 is no longer a plausible

Let us also consider the case of a generated justificatio tree;
factwhih isrejctedby he uer:the KB does not deductively entailfactwhih isrejctedby he uer:16"suitable(macplusO7, publishing)";

"suitable(macplusO7, publishing)". *the updated general justification tree no
The corresponding plausible justification tree longer covers the tree in Figure 13;
is shown in Figure 13. This tree was obtained *the plausible upper bound of the PVS is
by instantiating the general tree in Figure 8 specialized so that it no longer covers the
with facts from the KB. It shows how a false leaves of the tree in Figure 13.
fact is plausibly entailed by the KB.

suitablc(xnacplusO7. publishing)

~ deduction

rwis~macplusO7 pblshin1g-sw) cormmwiicatc(niacplusO7. lasezjct~l) isaoaserjet~l, hi aiilyjsrinter)

( deduction
isa.pgemaker, publishing--sw) is~laserierO1. print./)- '/rcsoluuioD(IasaJet~l. high)

nin~ maphnW7 e- ak~r) on(m acptusO7, appletalk) 4nlsjtl di pedls~ tl ih

os(unodcO3.'inmasc-s)Nos(maWplusO7 ma-s conncfpl~ ctalk. fddi) inductive prediction

runs(maclcO3, page-maker) processor(IascretO 1. risc)

Figure 13: Another instance of the plausible justification tree in Figure 8,
which shows how a false fact is plausibly entailed by the KB.
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Detecting the wrong implication from the pies of the rule from the discovered negative
plausible justification tree in Figure 13 is an example.
intrinsically difficult problem for an au- Asarulofpdtnthabvrlete
tonomous learning system. One possible solu- Asneal reasublt ofupdtingato the aoe ruigue, th
tion, which is presented in (Tecuci, 1993), s isendaera pausil jutiictinwre in Figure 84 n tevr
to blame the implication which is the least so pc is updated as shown in Figure 14,ad5h.vr
plausible, and the correction of which so pc sudtda hw nFgr 5
requires the smallest change in the KB. For a It might not always be easy to identify the
human expert, however, it should not be too problem with a wrong inference, and to
difficult to identify the wrong implication and specialize the corresponding rule so as no
even to find the explanation of the failure longer to cover the negative example. In such
(Tecuci, 1992). In the case of the tree in a case, the wrong inference is kept as a
Figure 13, the wrong implication could be negative exception of the rule which
identified by the user as being the deduction generated it, as shown in Figure 16.
from the top of the tree:___________________

suitable(macplusO7, publishing) :-suitable(X, publishing)
runs(mnacplusO7, publishing-sw), plausible upper bound
communicate(macplusO7, laseiet~l), isa(T, something), isa(U, publishing-sw),
isa(lasetjet~l, high-quality-printer). isa(V, something), isa(W, something),

Although macplusO7 runs publishing software isa(X, something), isa(Y, printer), isa(Z, something),
and communicates with a high quality printer, os(Z, 'I), runs(Z, U), os(X, T), display(X, large),

it i no suiabl forpubishig bcaus it on(X, V), connect(V, W), on(Y, W),
hav isntsiablare do pbisplay.cus i processor(Y, risc), resolution(Y, high).

does not hvalagdipy.plausible lower bound
Consequently, the rule which generated the isa(T, op-system), isa(U, publishing-sw),
above implication is specialized as follows isa(V, network), isa(W, ethernet),
(requiring X to have a large display): isa(X, workstation), isa(Y, printer),

isa(Z, workstation), os(Z, 'I), runs(Z, UT), os(X, T),
suitable(X, publishing) display(X, large), on(X, V), connect(V, W),

runs(X, publishing-sw), display(X, large), on(Y, W), processor(Y, risc), resolution(Y, high).
communicate(X, Y), isaY, high-quality-printer), ihtepstv xml
with the positive examples wth the ositipagexamper,~pltl,~tent

X=macHO2, Y=proprinterol. X=mac-Ho2, =proprinterl,Z=mapplecO3.heet
X=sun~l, Y=microlaserO3. maH2 prritrlZ-ac03

with the negative example T=ullix, U=frame-maker, V=fddi, W=etbernet,
X=macplusO7, Y=laserjet~l. X=sun~l, Y=microlaserO3, Z--hpO5.

with the negative example
One should notice that the predicate T=mac--os, U=page-maker, V=appletalk, W=fddi,
"display(X, Y)" could be defined by the user, X=macplusO7, Y=lasetJet~l, Z--maclcO3.
or could be suggested by the system as one
which distinguishes the known positive exam- IFigure 15: Updated PVS.

siale(X pblshing)

D E D U C T I V E G E N E R A L IZ AT IO N ýs ( .h g -~ i y p i t r
rus j, u~ing-sw) display(X. large) comnmflicate(X, Y)

DEDUC71VEGEIVERAUM77TIN DEDUCTIVE GENERALIATI7ON
DEDUCTIVE GEIVERALJ2ATION .0 *1

rnX.U) isa(UJ, publishing-sw) LsaY. printer) / resolufi*nY. high)

GENERAUZ4 TFON BASED ON ANALAOGY on(X, V) Cf(,W) xd4hi)

z'gA cnel(.W EMPIRICAL NVD UC77VE GENERALJZ4 TION

runs(7 U) I
processoi(Y. rtsc)

Figure 14: Updated general justification tree.
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X (although it might not be associated withsuitable(X, puliLsbng):- each of these instances), without character-
rnsC, pubfishing-sw), coumunicale( Y), izing any negative exception of X. A
with thegpoaitiveyexamples potentially discriminating predicate like

X-macItO2, Y=ppemprinte1 "display" is one which characterizes a

X=sunOl, Y--microlaser3. positive instance of X (either macII02 or
with the negative exception sun0l), and does not characterize the negative

X=macplusO7, Y=iaserjetfl. exception of X (macplus07). If such a
predicate is found, then the user is asked if it

Figure 16: A rule with a negative exception. characterizes all the other positive instances
of X. The same technique could, of course, be

During experimentation, the lower bound of applied to the instances of Y.
the plausible version space is generalized so
as to cover the generated facts accepted by It may happen, however, that the system
the user (the positive examples), and the up- cannot find a property to transfer from one
per and lower bounds are specialized so as to positive example of X to the others. In such a
no longer cover the generated facts rejected case, it will try to elicit a new property byby the user (the negative examples). This pro- using a technique similar to the triad methodcess will end in one of the following employed in the elicitation of the repertorysituations: grids (Boose and Bradshaw, 1988; Shaw andsituaions:Gaines, 1987).
* the bounds of the plausible version space

become identical. Another method for removing the negative
* the bounds are not identical, but the KB no exception is to look for a relationship between

longer contains any instance of the upper X and Y which could characterize all the
bound of the version space that is not an positive instances of X and Y, without
instance of the lower bound. Therefore, no characterizing the negative exception.
new fact of the form "suitable(x, Yet another method is to define a new
publishing)" can be generated. concept that covers all the positive instances

Notice that the plausible version space is only of X (or all the positive instances of Y),
used for controlling the experimentation without covering the negative exception of X
phase. It is not kept in the KB as a new rule (Y). A method similar to this one is reported
for inferring "suitable(x, publishing)" because by (Wrobel, 1989).
it would be a redundant rule.

8. Summary and conclusions
7. Goal-driven knowledge elicitation 8 umr n ocuin

Figure 2 suggests two basic approaches to
Because the KB is incomplete and partially the development of the competence of a
incorrect, some of the learned knowledge deductive knowledge-based system. One
pieces may be inconsistent (i.e. may cover approach is to extend the deductive closure
negative examples), as it is illustrated in of the KB by acquiring new knowledge. The
Figure 16. In order to remove such other approach is to replace the deductive
inconsistencies, additional knowledge pieces inference engine with a plausible inference
(which may represent new terms in the engine, and thus to enable the system to
representation language of the system) are solve additional problems from the plausible
elicited from the expert, through several con- closure. The first approach has the advantage
sistency-driven knowledge elicitation meth- that the system employs "sound" reasoning,
ods, as described in (Tecuci and Hieb, 1993). but it has the disadvantage of requiring a
These methods are applied in the third phase difficult knowledge acquisition process. The
of KB refinement, as shown in Figure 3. second approach has the advantage of
Let us consider the case of the inconsistent avoiding knowledge acquisition, but the
rule in Figure 16. disadvantage that the system needs to rely onplausible reasoning.
One consistency-driven knowledge elicitation Theu knole dgea refin es

method is to look for a new predicate which The knowledge refinement method presented
could characterize all the positive instances of in this paper is an attempt to combine these
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two approaches in such a way as to take
advantage of their complementarity. This s
method is summarized in Figure 17. It , nd T.e.u t

resulted from the merging and extension of .,n
two related research directions:(Ddce
"* the knowledge acquisition methodology of

Disciple (Tecuci and Kodratoff, 1990) and Toth

NeoDisciple (Tecuci, 1992);
"* the MTL-JT framework for multistrategy

learning based on plausible justification
trees (Tecuci, 1993). r., anewitadaintroduced. The lacd is outside

On the one hand, it extends NeoDisciple with the i"deductie Ct,.

respect to the knowledge representation used
and the types of inferences and
generalizations employed and, on the other
hand, it adapts and integrates the MTL-JT
framework into an interactive knowledge
acquisition scenario.
The method is based on the following A plaltji ,,o,., Plausit
general idea. The system performs a complex the,•watis • l•.tued va C:nuftitmyp irrem --e TlVS• ''l•i

reasoning process to solve some problem P. ,ZstftW C ten
Then it determines a justified generalization fad With "tnenein the Dduci,.ociginal deductiv and pl0 il Closue

of the reasoning process so as to speed up the d.mh.

process of solving similar problems Pi. When T

the system encounters such a similar
problem, it will be able to find a solution just
by instantiating the above generalization.
In the context of the presented method, the Ae,,ati,,fthe pla, Plaut
problem to solve is to extend the KB so as to CIOJ.the d -.ci ,w .U DChas
entail a new fact I. The complex reasoning nowbeen xtendedtoover

process involved consists of building a plau- mrn oETC. 0,,uct

sible justification tree. This reasoning
process is generalized by employing various Taft

types of generalization procedures. Then,
during the experimentation phase, the system
instantiates this generalization and, using it,
improves the KB so as to entail similar facts Throgh expertlnntation and
which are true (or to no longer entail similar ota wiege C1

factswhichamfase).eficitdion. DC may be further

facts which are false). r,.fereucingt•t
One important aspect of the presented itndicate ÷.n
method is the notion of plausible justification inicate negato"e anc'es.

trees (Tecuci and Michalski, 1991; Tecuci,
1993). Other systems have employed implicit
justification trees (DeRaedt and Bruynooghe,
1993), or even explicit justification trees Figure 17: Modification of DC and PC
(Tecuci, 1988; Mahadevan, 1989; Widmer, during KB refinement.
1989), that integrated only a small number of
inferences. In our method, the plausible number of inferences employed in a plausible
justification tree is defined as a general justification tree.
framework for integrating a whole range of
inference types. Therefore, theoretically, Another important feature of the KB
there is no limit with respect to the type or refinement method is the employment of
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different types of generalizations. While the bench for knowledge-based systems, in
current machine learning research Knowledge Acquisition Tools for Expert Sys-
distinguishes only between deductive terns, J.Boose and B.Gaines (Eds.), AP, 1988.
generalizations and inductive generalizations Cain T., DUCTOR: A Theory Revision Sys-
(Michalski, 1993), this method and the MTL- tem for Propositional Domains, in Machine
JT framework (Tecuci, 1993) suggest that Learning: Proc. of the Eighth Int. Workshop,
one may consider other types of L.A. Birnbaum and G.C. Collins (Eds.),
generalizations, each associated with a Chicago, IL, Morgan Kaufmann, 1991.
certain type of inference (as, for instance,
generalization based on analogy). Carbonell J.G., Derivational Analogy: a

Theory of Reconstructive Problem Solving
There are also several ways in which the and Expertise Acquisition, in Machine
method could be improved. For instance, the Learning: An Artificial Intelligence
set of inferences involved in the present Approach, (Vol. 2), R. S. Michalski, J. G.version of the method is quite limited Carbonell, and T. M. Mitchell (Eds), San

(deduction, determination-based analogy, Mateo, CA: Morgan Kaufmann, 1986.

inductive prediction, and abduction). New

types of inferences should be included, as Cohen W., The Generality of Overgenerality,
well as more complex versions of the current in Machine Learning: Proc. of the Eighth Int.
ones. Workshop, L.A. Birnbaum and G.C. Collins

(Eds.), Chicago, Morgan Kaufmann, 1991.
Also, new types of justified generalizations

(each corresponding to a certain inference Collins A., and Michalski R.S., The Logic of
type) should be defined. Plausible Reasoning: A Core Theory,

Finally, the goal-driven knowledge elicitation Cognitive Science, Vol. 13, pp. 1-49, 1989.

methods briefly mentioned in section 7 Davies T.R. and Russell S.J., A Logical
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Abstract tion (knowledge discovery), empiri-
cal induction on examples (using in-

A novel learning task, that of learn- ductive logic programming), learn-

ing to survive in an unknown and ing control knowledge (by modifying

hostile environment, is defined and evaluation functions), and learning

explored. The environment is incor- from experience (using a knowledge

porated in an adventure-game of the base manager).

"hack" family and shares several im-
portant features with the real world:
the actions are non-deterministic, the
agents posses only partial knowledgeabout their performance and about Central to intelligence (whether natural or
the world, and they have only a lib- artificial) is the ability to adapt to and toited influence on their environment, perform well in an unknown environment.
Central in the adventure game is Whereas the real world is still a very complex
Centhe autonom agventr which conenvironment for artificial intelligence, some
sists of a planning and a learning fundamental properties of the real world can
component. This agent (and its op- easily be modelled in artificial worlds such
ponents) can execute actions, which as adventure games. Although such artificial
ponent) chang execute atironmentwhsoworlds are usually considered as toy-domains,
actions will have desirable effects they often share important properties with thewith respect to the agent's goals, oth- real world, which means that understanding
ers will not. Initially, the effects of intelligence in artificial worlds can enhance our
the actions and the behavior of the general understanding of intelligence. At the
theatins aunknown to he agent. same time, artificial worlds have the advantage
opponents ithat their complexity can easily be controlled,
In order to survive in the hostile en- making feasible a stepwise introduction of real
vironment, the agent has to learn world characteristics.
the effects of the actions, the be-
haviour of its opponents, to evalu- In this paper, we explore an artificial world of
ate the situation it is in, and to exe- an adventure game of the "hack" or "rogue"
cute the appropriate actions. To this family [Raymond and ThL-eepoint, ; Stephen-
aim, we have implemented an agent son, ]. In this type of game, the player controls
incorporating multiple strategies for an agent living in a hostile environment ran-
learning: learning by experimenta- domly generated on the board. The environ-
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ment is hostile in the sense that other agents 2 The environment
live in the same environment and may attack
the player's agent. To survive, the player has The game is played using the graphical inter-
to collect items (such as food, weapons, etc.), face shown in Figure 1. The available knowl-
to eat and drink at regular times and to kill his edge about the current situation of the learn-
opponents. This kind of game has the follow- ing agent (or the human player, if the game
ing real world characteristics: agents posses is play td by humans) is shown on a board of
only partial knowledge of their current situ- 9 positions (the board shown in Figure 1 con-
ation and their performance, to survive they tains 49 positions, but only the 9 central po-
have to learn the effects of their actions and sitions are observable by the player). The po-
the behavior of their opponents, and they have sition in the middle of the board is always oc-
to use that knowledge in order to select appro- cupied by the learning agent. The position of
priate actions to execute. The main contribu- the learning agent is identified by the number
tion of this work is the design and implemen- 0 and the agent is represented by [il Neigh-
tation of an intelligent agent, which learns to bouring positions have numbers ranging from
survive and to improve its performance in a 1 to 8. The neighounnM positions may contain
non-trivial artificial world. Furthermore, be- opponents (Humans [b Dragons [D]and Batscause the agent's most distinct characteristic opponden t s H D Doad ati s

is its ability to learn using multiple strate- [B]) and objects (Gold ], Food % Potions

gies (and it seems very hard to survive us- Armors R[, Handweapons M, Wands
ing a single state-of-the-art learning strategy, and spells .fof different types); see the Ap-
if not impossible), our work provides evidence pendix for more details. For example, in Fig-
that multistrategy learning is central to intel- ure 1, the agent is next to a Bat (B) on position
ligence. Our agent learns different types of 5, next to food (on position 2, next to a wall
knowledge: rules to predict the effects of ac- (*), and next to a position containing several
tions and the behavior of opponents (using objects (#). Objects can be cursed; cursed
empirical learning from examples), an evalu- objects behave differently than uncursed ones.
ation function to assess the degree of perfor- Curses can be added or removed by quaffing
mance (learning control knowledge), and our potions, casting spells or zapping wands. Ob-
agent maintains only the interesting rules in jects are possessed by agents (the learning
its knowledge baze (learning from experience agent has an inventory of the objects it owns)
using a knowledge base manager). It uses a or positioned on the board. To survive in the
kind of minimax algorithm as planner to se- game, the agent has to gather objects and use
lect the next action to execute. them as a protection against its opponents.

This paper is organized as follows: in Section The aim of the game is twofold: to become
2, we discuss the artificial world incorporated rich (i.e. acquire as much gold as possible) and
in the adventure game, in Section 3, we present to maximize the energy level. The energy level
the overall architecture of the learning system, is the only means of direct performance eval-
in Section 4, we discuss rule generation and uation. It decreases when the agent is hit by
knowledge base management, in Section 5, we opponents, when it hits one of its opponents or
show how the evaluation function is learned, in when it eats cursed food; it increases when the
Section 6, we present the planner, in Section agent consumes uncursed food. If the energy
7, we report on the current state of the system level falls below zero, the agent dies.
and some experiments, finally in Section 8, we The game operates in a cyclic process. In the
conclude and touch briefly on related work. first step of each cycle, the learning agent can

execute an action and in the second step of
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each cycle, all its opponents may execute an lowing:
action. A list of possible actions is specified
in Appendix 1. The cyclic process continues * complete knowledge of the effects of the
until the agent dies or theuser stops the game. move action;

e for all other actions, a list of determina-
tions [Russell, 1989] specifying for each
action, the possibly relevant literals; de-

- terminations capture the intuitive knowl-
8 -1-11- :2 1 CAuto

e ,ea.wgm edge a novice human player has about the
7 i.-oIkr.d V actions that can be executed; for instance,
- - m.ove V for the actions drop and pick up only ob-

_ _ - ± .i, V jects possessed or on the current posi-
Dop * tion of the agent and general characteris-
,WWid V tics (such as curses, energy and gold) are
CTa..of V relevant whereas the opponents and the

f,,ew: 97i.Mo [cat V neighbouring positions are irrelevant; for
gla : HUMAN att the actions wear and take off only featuresGold : 0- 'Quaff V

(c•.e- ) D U related to armors and general character-
vow turn -ow istics are relevant; the determinations are

used to remove irrelevant literals when
constructing examples, i.e. only literals
matching the determinations are included

Figure 1 : graphical interface of the in the example descriptions;
game. e a list of general features influencing the

aim of the game (control knowledge); this
Important for our scientific purposes is that knowledge is used by the evaluation sunc-

the actions are non deterministic, that the tion learner (see Section 6) and is basi-

only direct evaluation criteria our agent has calya l st o eature sc as ber

access to is the energy level and the number of cally a list of features such as the number

gold pieces, and that when the agent moves to- weapors , the number of o p-

wards previously unvisited positions, they are weapons being wield, the number of op-

filled out randomly. Non deterministic in our ponents on neighbouring positions, etc.

context means that executing the same action We believe such knowledge corresponds to
twice in the same situation may yield different prior assumptions and expectations each ra-
effects (determined by a random generator). tional agent has (and should have) when op-
For instance, when hitting an agent, three ef- erating in this domain. Learning without such
fects can occur: the agent misses, the agent knowledge is possible as well, but is much
hits the other agent (and the other agent's en- slower and slightly harder.
ergy level decreases), the agent hits the other
agent (and the other agent's energy level falls
below zero, resulting in the death of the other 3 The Autonomous Agent's
agent). Architecture
The initial knowledge of the game our agent
starts from is similar to that of a novice hu- Figure 2 shows the architecture of the system,
man player. More specifically, the ONLY ini- its main components and the information flow
tial knowledge our agent possesses, is the fol- between the different components.



95

4 Learning and managing rules

DMOnbewr RUESOM4.1 Representing rules and examples

1EV scnosj We first introduce some concepts, which are
illustrated in Example 1. A situation descrip-

in.-Aa K. BASE tion (of a state in the game) is a conjunction
of ground atoms (as perceived by the learning
agent). Negated atoms are not explicitly listed
in situation descriptions as the closed world as-
sumption is being used [Reiter, 1978]. The no-

Figure 2: The Agent's Architecture tation for the closure of a situation description
S is cwa(S). Also, rather than applying the

In the two steps of the game cycle, the cur- closed world assumption as it is, we explicitly

rent situation of the game is transformed in introduced negated literals for selected pred-

the next one. In the first step, this is done icates. The list of these predicates and their

by executing the action selected by the au- closure is given in Appendix 2.

tonomous agent, whereas the transformation For each step in all cycles of the game, an
of the second step is determined by the game. example is constructed. An ezample is com-
Each transformation is encoded in a symbolic posed of four parts: the description S of the
description, which is passed to the rule gener- situation before the cycle, an atom Act denot-
ator as an example. The rule generator possi- ing the action executed, and an add- and a
bly generalizes (using inductive logic program- remove-list (Al, RI). The remove list contains
Ming) the rules in the knowledge base with the set of a literals that have to be removed
the given example, and passes the resulting from the situation description after executing
generalizations (or the example when no good the actic-i; the add list contains the list of lit-
generalization is found) to the knowledge base erals to oe added to the situation description.
manager, which may reorganize the knowledge This STRIPS-like representation was choosen
base to accomodate new rules. The task of the because of its simplicity and power [Fikes and
knowledge base manager is to decide which Nilsson, 19711.
rules to keep and which ones to forget. The The example generator constructs for each
planner uses the knowledge base and the eval- pair of situation descriptions S, and S2

uation function to select the next action to ex- and connecting action A, an example
ecute. The planner performs a variant of mini (a, Act, At, RI) where , = S e U {-I I l E
max search. The evaluation function is learned S2 S } A t here S s Si U nega-
by an independent control learning module. 5 d(h eodstcnan h eation of all literals present after applying the
The rules, their generator and the knowledge action but not present before); A = Act;
base manager are described in Section 4; the Al = cwa(S 2) - c-wa(Si); and RI = cwa(S1) -
evaluation function learner in Section 5; and cwa(S 2 )1. Negated literals are only used to
the planner in Section 7. Because the current
system is very complex (it is implemented in 'Furthermore, the energy and gold level of the sit-

Prolog by BIM, containing more than 10000 uation descriptions S1 and S2 are compared. For non-
lines (comments not included) of Prolog code), identical levels, the comparison-predicate less-than islesha(comakesomentslin t sincluded)iofi ions che) applied and a literal for this predicate is included in
we shall make some slight simplifications in the the add-list. Also, literals considered irrelevant for the
presentation of the system and focus on con- action are filtered from the situation description (cf.
cepts rather than on implementation details. Section 2).
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model differences between the two situations. kind.of-weapon(w,handweapon),

The structure of rules is a generalization of kind.of.hand.weapon(w,dagger),
that of examples. A rule is composed of five myhenergy(500), rnygold(O), alive, uncursed,
parts: a conjunction of literals, denoting the my.kind(human).
condition part S, an atom Act denoting the Wh
action executed, an add- and a remove-list When executing the action wield(w), the re-
(Al, RL), and a list of counters C storing in- suiting situation description would be:
formation about the correctness, age etc. of wie
the rule. For the moment, we ignore the coun- ldn(o), agent(1 ),
ters. We shall discuss them in detail in Section obstacle.on(3), possessing(w),4.3. kind..of~agent(d,dragon), "

kind(s,spell), kind(w,weapon),
A rule (S,., Act,, Al4, R,, C,.) matches a rule kind-of-weapon(whandweapon),
(S, Actt, Alt, R4t, Ct) (or an example) if and kind -ofihand-weapon(w,dagger),
only if there is a substitution e such that S,.G C my.energy(500), my.gold(O), alive, uncursed,
St, Act,# = Actt and A4.O = Alt and RI,4 = my.kind(human).
RMt.

Rules (S, Act, Al, RI, C) can be used for pre- The example constructed from this transfor-
dicting the resulting situation description S, mation would then be (under the assumption
when executing action A in situation S. pro- that the irrelevant literals for wield are the ones
vided that there is a substitution 0 such that containing information about the neighbour-
SO C S. and ActO = A. The predicted situa- ing positions of the agent):
tion description S, = S. - RIO U ALO. Rules for
the learning agent and the opponent are rep- S = not-wielding(w), possessing(w),
resented using the same formalism. Actions kind(wweapon),
executed by an opponent, have an extra argu- kind of-weapon(w,handweapon),
ment, the agent executing the action. kind.-of-hand -weapon(w,dagger),

Two rules (S,, Adt,., Al,-, R4, C,) and my-energy(500), my.gold(O), alive, uncursed,

(St, Act,, Alt, Rig, Cc) are similar if and only if my-und(human);

Act, and Act are similar, and (A4, and Alt) Act = wield(w);
and (Rl, and Rig) are similar. Two literals are Al = wielding(w);
similar if and only if they have the same pred- RI = not-wielding(w).
icate symbol and sign. Two lists of literals are
similar if and only if each literal of the first Applying this rule to the original situation de-
list is similar to a literal of the second one, scription indeed results in the transformed sit-
and vice versa. uation description. Real-life situation descrip-

tions of game states are usually more compli-
cated as more objects and opponents are in-

Example 1 : Situations, examples, and volved. 0
rules

A situation description is, for instance: 4.2 Rule generation

agent-on(1,d), item-on(2,s), obstacle-on(3), Rules in the knowledge base are stored into
possessing(w), kind -of-agent(d,dragon), different classes of similar rules. Each class of
kind(s,spell), kind(w.weapon), rules is organized in a binary tree, where there
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is a connection between a parent rule and two * reduce S, as much as possible without
children if the parent is the generalization of deleting literals from RI, using Plotkin's
the children. The most general rule of each reduction algorithm.
class can thus be found in the top of the cor-
responding tree. Because the generalization algorithm is quite

The knowledge base is modified for each in- complex and relies on some concepts from in-
coming example. If there is no rule (class) in ductive logic programming such as inverse sub-comng xamle.If her isno ule(clss)in stitutions [Muggleton and Buntine, 1988] and
the knowledge base similar to the example, a stitution [Paotin, 19881 we

new class of rules containing only the example least general generalization [Plotkin, 1970] we

is added to the knowledge base. If there is a illustrate it by Example 2.

class of rules similar to the example, the corre-
sponding tree is searched for a rule matching Example 2 : Generalizing rules
the example and all counters of rules match-
ing the example are updated (see below). If no- Consider the following (simplified) example e
rule matching the example exists, the general- and rule r. The example starts from a state
ization of the top rule in the tree and the ex- where there is a bat on position 5 and a hu-
ample is computed and added to the tree. The man on position 7. When hitting the bat (with
generalization has thus two children: the top bare hands), the bat dies (disappears) and the
rule of the original binary tree and the exam- bat's weapon (an axe) is found on position 5.
ple. Furthermore the tree may be reorganized The meaning of the rule is similar.
according to the knowledge base management
principles outlined in the Section 4.3. Se = agent-on(5.b), kind(b,Bat), agent-on(7,h),

The generalization of kind(hHuman), not.-itemion(5,a);
a rule (S,, Act,, Ai, RI,,C,) and an example S, = agent-on(7,d), kind(d,Dragon),
(Se, Act,, Ale, Ri6 ) is based on Plotkin's well- notitem.on(7,s);
known Igg-operator (see [Plotkin, 1970]): The Act, = hit(5);
generalized rule (S,, Act., Al., Ri., C.) is com- Act,. = hit(7);
puted as follows (the actual implementation of Ric = agent-on(5,b), kind(b,Bat),
this algorithm is described in detail in [Bleken, not-item-on(5,a);
1092]): RI, = agent-on(7,d), kind(d,Dragon),

not-item.on(7,s);
"* compute S --+ Act9 = Plotkin's lgg(S, -. Ale = kind(a,Axe), item-on(5,a);

Act,, Se --+ Act.); this defines Sg and Ai, = kind(s,Sword), item.on(7,s);
Act3 ;

"* determine O, and 0e such that 1) (S - This results in generalizing the following lit-
Act,),. = Sr -- Act, and 2) (S, -- erals together (following Plotkin):
Act,)e= Se - Act; - Lgg(agenton(5,b), agent-on(7,d)) =

"* determine Or` and e;1 such that 3) agent-on(P,A)
R4GO,;1 C S and 4) RIO,-' C S and 5) Lgg(kind(b,Bat),kind(dDragon)) = kind(A,K1)
R rO,; = RL6O;1 ; conditions 3) to 5) are lgg(notitem _on(5,a),not item-on(7,s)) =
needed for constructing meaningful gen- not-item.on(P,1)
eralizations because inverse substitutions igg(agent.on(7,h),agent -on(7,d)) =
are not necessarily unique; agent-on(7,A2)

"* Al, := lgg(AI,e;1 ,A160;1 ) and RI, := lgg(kind(hI,Human),kind(d,Dragon)) =
RL e,;1; kind(A2, K2)



98

19g(hit(5),hit(7)) = hit(P) generated;

*applicable (A): contains the number
yielding: of times the situation part of the rule

matched the given situation and the ac-
S, (non-reduced) = agent-on(P.A), kind(AK1), tion, executed in the given situation, was
notutem.on(P,I), agent-on(7,A2), kind(A2,K2) similar to the action of the rule;
Act9 = hit(P); * correctness (C): contains the number of
e. = P = 5, A = b, K1= Bat, I= a, A2 times the rule's prediction was correct
h, K2 = Human } when it was applicable.
6={ P P=7, A=d, K =Dragon, I=s, A2
= d, K2 = Dragon } One can easily see that the T counter encodes

a kind of age of the rule (the number of times
0.' is unique (no term appears twice on the it could have been used), and that the prob-
right hand side of equations); the inverse sub- ability that the result will be correctly pre-
stitution for 06;' satisfying the requirements is: dicted by the rule (when the current situa-
{ 7 --+ P, d --* A, Dragon --+ K1, s -+ I } tion matches the condition part of the rule

and the corresponding action is executed) is
which results in: C/A. Using these counters, it is easy to de-

fine criteria for accepting a rule as promis-
Ri9  = agent-on(PA), kind(A,K1), ing (and deleting its children from the binary
not-item.on(P,I); tree) and for deleting a rule. Clearly, rules
Al, = lg9((kind(I,Axe), item..on(P,I)), that have been around for a long time (i.e.
(kind(I,Sword), item_on(P,I))) = kind(I,K3), with a large T counter) and that are seldom
item.ron(P,I). applicable (i.e. with a small A counter) are

not interesting -as they have a low probabil-
The reduced S, = agent-on(PA), kind(A,K1), ity of being used. Also, rules that have a low
not-item.on(P,I), which yields a meaningful probability of being correct (i.e. with very
generalization. Notice that the rule g matches low C/A) can best be forgotten. Furthermore,
the example and the rule it was generalized when a rule has been proven to be correct a
from. 0 number of times, its children are forgotten.

These principles have been implemented in
the system (cf. [Bleken, 1992; Swennen, 1991;

4.3 Knowledge base management Chaouat, 1991]) and have proven to result in
small knowledge bases containing useful rules.

In the previous section, we discussed how the
agent generalized rules from experience. Here, 5 Learning the weights of an
we shall present the management principles
of the rule base. The aim of knowledge base evaluation function
management is to memorize only the most in-
teresting rules and to forget the other ones. The only direct means to evaluate the perfor-
Forgetting uninteresting rules is necessary for mance of the agent is its current score, which
efficiency purposes. Therefore, the knowledge is the value of the static evaluation function
base manager keeps track of a number of coun- Stat(S) = w, x EnergyMS) +w2 x Gold(S) (the
ters for each rule: weights are known to the agent and W2 is much

smaller than w1) in the current situation S.
e tested (T): contains the number of sim- Notice that the static evaluation function is

ilar actions executed since the rule was not in an operational form, in the sense that
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it does not say anything about the relevance In general this equation will not be satisfied.
of possessing items, of killing opponents, of When it is not satisfied it is desirable to modify
quaffing potions, etc. When planning for the the operational evaluation function, such that
next action to execute (d. next section), the it better approximates the static one. There-
agent performs a variant of mini max search fore we define the updated evaluation function
using the rules in the knowledge base and an uOp
evaluation function. If Stat is the evaluation
function being used, the agent will have to con- uOp(SI) = , , wi x F,(S1) + E, d- x (F,(S,,) -
sider a very deep search tree, which is unde- F,(S1 )) = Stat(S.)
sirable: it requires a lot of computation and in
the particular context of the game, the leaves The updated function assumes that the er-
become much more uncertain (moving outside ror of the old operational function is due to
the visible part of the board always results in the parameters that changed in between situ-
uncertainty as the agent does not know the ation S, and S,,. The updated function can
characteristics of positions outside its view), be used as the basis of an evaluation function
Therefore Stat is not suited as an evaluation learner. Indeed, we can now compute the up-
function for a planner. Instead, we would like dated weights wi = w, + d& as follows:
to have an operational evaluation function Op
that evaluates the current situation in terms Stat(S•) = ucp(S1 )
of directly observable features F,, such as the - wZ x i$(S1) + d. x (F,(S,) - F.(S1))
number and kinds of opponents, of (worn and
unworn) armors, of (wielded and unwielded) - Op(Si) + d .• x (F,(S,) - F,(S1 ))
weapons, of wands, of food, etc. A suit-
able format for such an operational evaluation
function would be Op(S) = E2 wi x F,(S). In As the equation is underdetermined for the a,
the implemented adventure game, we employ we have to approximate the dn making certain
such a function where the numerical features assumptions:
F, are similar to the ones discussed above. If * the d, for which F,(S,,) - F,(S1) = 0 are
the operational function is to be relevant to assumed to be 0, reflecting the principle
the ultimate goal of the system, as incorpo- that the weights of features should not be
rated in the static evaluation function, the two
functions should be related. Ideally, we should changed without evidence; and
have that when evaluating Op(SI) in a situa- 9 all non-null features are assumed to have
tion S, it tells us something about Stai(S,) equal impact on the error; therefore d x
where S. is the n-th situation after S1

2. Ide- (Fi(S,) - Fi(Si)) = Ct (2) is assumed to
ally, we should have Stat(S,,) = Op(S ).3 be constant for a constant Ct for these

features.
2The algorithm stores the n previous situations and Under these assumptions we have:

uses the oldest one as S, and the most recent one as

S,,, n being a parameter of the system. '• d x (i(S,) - Pi(S1))
3At this point, the reader might believe that n Ct ,

should be equal to 2. Whereas an approach where m
n =2 could be followed, many important side effects where j ranges over the m features for which
of actions are not immediate visible. E.g. when wear- FI(S,.) - F,(Si) * 0. Together with equations
ing an armor, the immediate effect is that the armor
is being worn, but the side effect that the agent is now sirable to take slightly larger n, i.e. n = 10. Too large
better protected is only noticed later, when the agent values for n should be avoided as the effects of the
is attacked by its opponents. Therefore it is more de- actions disappear when waiting too long.
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(1-2), this yields: rules and some objectives, we can use a vari-

ot = Siat(S') - Op(Si) ant of minimax search to select the most in-

m teresting action to execute in a given situa-

=i Stat(S) - Op(sp) tion. In adventure games, there are two dis-

=m x (Fi(S,) - Fi(Sl )) tinct primary objectives: survival and learn-

Our (preliminary) experiments have shown ing. Indeed the most important objective is

that applying this method as its stands, has definitely to survive as long as possible. How-

two minor problems: ever, human players also tend to experiment
with several actions, when there are few risks

"* the weights oscilate frequently and with involved, in order to explore the environment
large values; this can be avoided by re- and enhance their understanding of the game.
placing m by m x f where f is a user Therefore, an intelligent learning agent should
defined parameter; also follow this strategy.

"* the weights grow steadily and can become In order to plan, thr agent starts from a sit-
very large; therefore it is more appropri- uation description So and a number of ac-
ate to normalize them after each update. tions A&, ... , A,, that are executable, i.e. le-

Using these two changes, the evaluation func- gal, in So. Let us assume that there are rules

tion learner learns rather quickly. Given 9 fea- R 1, ... , Rk (for each class of rules, only the

tures, random play, initial weights being 0 (ex- most general rule considered to be correct, is

cept for energy and gold), the learning mod- used for prediction) whose action is similar to

ule learns weights with a correct sign (i.e. th one of the actions A,,..., Ai. (For the actions

direction of the influence of the feature is cor- Ai+,,..., A. there are no rules in the knowl-
rect) in less than 300 cycles. edge base.) Using these rules to predict theoutcome of executing action Ai in situation So

Again, we wish to stress here that the only results in a number of situation descriptions
knowledge being used is similar to that pos- Sal,1 , ... , Sal,., when executing action A ... ;
sessed by novice human players: the fea- in situation descriptions Sai, , ... , Saj,,,, when
tures that are potentially influence the goal executing action Aj. Here, n1 (n!) is the num-
of the game. Furthermore, these features ber of predicted situations when executing ac-
are nearly straightforwardly derived from the tion At (Aj). Furthermore all situations have
knowledge representation. One possible refine- an associated probability p.,t defined as the ra-
ment, which we are planning to investigate, is tio C/A of the rule used in the prediction. Be-
to have a two layered evaluation function, each cause the sum E, p.,t of these probabilities is
layer having a format similar to that above; not necessarily equal to 1, we normalize them
the outer layer would contain the aggregated into likelihoods l.,t. The estimated value of ac-
features such as the number of armors, oppo- tion Ai is then E(Ai) = Et 4,t x E(Sai,t). The
nents and weapons, whereas the inner layer best action Ai to be executed in situation So
would divide each aggregated feature in its for the learning agent is that with a maximum
components. For armors, this would include E(Ai); therefore E(So) = maz E(Ai). The
the number of helmets, of pairs of gloves, of values of the resulting situation descriptions,
boots, harness, coats. the E(Sai,t), are computed similarly. The only

differences are that:

6 Planning to survive
* We do not assume that the opponents

Given the evaluation function uOp of the pre- choose the action with a maximum value
vious section, the knowledge base containing for the learning agent, nor the action with
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a minimum value, as either of these op- e the value of the actions of an opponent,

tions would imply that the opponents are is the average value of the resulting situ-
aware of the aims of our learning agent ations.
and want to help the agent achieve these
aims or to make it fail. Rather we as-
sume the opponents act independently of
the learning agent and therefore we take
the average. Situati S

* All of the opponents on the board can ex- AguCZ Actons A

ecute an action, which affects the current Agem's Rules R for A
situation. Since we assume all opponents P $Ss'
act independently, we define the value of
a situation S as the average of the values Oi3PW= 0
of situations resulting from the actions of ActionsAo( Opponent 0

the opponents.4 Agets Raues R" for Oppocat 0 Actioas K

More formally, E(Sait) = I/n El E(O,) (I = P. diced Situatio IS"

Otol = n), where there are n opponents O0
able to execute an action in situation Sait; and
E(01) = 1/ma E E(Ak, Ca) (k = Otok = va)
where there are ml possible actions Ah in sit-
uation Saj, that can be executed by agent
C1. E(Ah, Ca) is then computed as for E(A 1 ) Figure 3: Structure of Search
above. Obviously the recursion should termi-
nate at a certain level; this is done by assigning The planning phase discussed above started
at that, E(S) = uOp(S) for all situations S from actions Ai, .. , A., for which we had rules
occuring at that level. Also, situations with a predicting the actions At,..., Ap. Planning
likelihood less than a user defined parameter, only estimates E(A1 ), ... , E(Ai); it does not
are not elaborated further. say anything about E(Ai+1 ), ... , E(A,). Fur-

The computation of the value of situation So thermore, because uOp is used to evaluate the

is summarized as follows (see also Figure 3): leaves of the search tree, it only takes into ac-
count the survival goal (i.e. the aim of the

"* E(SO) is the maximum value in the set game). To evaluate the interestingness of ex-
of actions Al executable by the agent in ecuting an action A, with regard to the learn-
situation So; ing goal, we use the uncertainty of an action

"* the value of an agent's action Aj is the (similar to [Scott and Markovitch, 19891 and

average value of the resulting situations to the information content frequently used in

Saj,,, predicted by rules in the knowledge TDIDT algorithm [Quinlan, 19861): U(A.) =

base; - E Ijdog(lk,). The higher the uncertainty of
"an action, the more interesting it is to execute.* the value of a situation Saj•g is the av-

erage value of the opponent's O0 in that Using these principles, planning for survival

situation; and learning is coordinated as follows: if the
"energy level of the agent is below a user de-

* the value of an opponent ca is the average fined critical value, then the agent selects the
value of the actions it can execute; best action according to the survival objective

4This assumption is not realistic, (cf. Section 7). (i.e. the action A with highest E(A)), else



102

if the best action B according to the learn- Coget, 1993].
ing objective has an uncertainty higher than a Furthermore, in some preliminary experi-
user defined critical value, the action B is exe- ments, we were able to show -.hat the sys-
cuted; otherwise an action for which nothing is tern indeed improves its behaviour over time
known is selected (i.e. one of the Ai+I, ... , A,). and learns to survive. In these experiments,
Within the above framework, it is straightfor- we started from an empty knowledge base, an
ward to define alternative strategies (e.g. max- evaluation function with weigths initialized to
imizing survival). 0, and f value of 200, and a minimax tree

that predicted one cycle of the game (the effect
7 Preliminary experiments resulting from the system agent's action and

the situations resulting from that by predict-
The current state of the system is such that ing the opponent's actions and effects). The
all individual components are known to work results are shown in Figure 4, and placed in
well and also that there is some evidence that context in Figure 5. In Figure 4, the thin line
the system as a whole functions well: denotes the score for each of the 11 games.

The average score (thin line) of the last games
"* the rule generator generates useful rules; improves slow but steadily. This score is plot-
"* using an autonomous rule generator and ted in Figure 5 against the average perfor-

knowledge base management results in a mance by random play, by novice humans and
small number of good rules being stored; by expert humans (the designers of the game).
in one of the experiments (see [Bleken, Using our multi-strategy learning system, the
19921), rules for 6 actions were learned system performs already better than novice
from 500 examples; in total about 200 human players. Nevertheless, even after fur-
generalizations were computed and the fi- ther training, the average score becomes never
nal rule base contained only 10 rules (this better than 800-850. Experts perform better.
means that 690 rules were discarded) of We believe that this is mainly because of some
which 2 were examples and the other 8 current shortcomings of the system:
general and correct rules;gtheneraluatnd cor ctionules The inability to plan long and compli-

"* the evaluation function learner quickly cated sequences of actions; in the hack
learns evaluation functions that make type of systems it is often desirable to pur-
sense; sue a kind of abstract plan (e.g. move to-

"* when using good rules, the planner selects wards food, escape from your opponents,
appropriate actions, leading to increased search a particular item, etc.), which may
energy levels and gold pieces owned and require many actions before these plans
to aged agents (in random play, the agent are satisfied. Currently the system is
dies quickly, after about 30 cycles on the shortsighted as it can only look ahead a
average). few steps.

Also, the learning system is efficient: to learn * The inability to compute the combined
and plan, the system (implemented on SUN effects of the opponents. At the mo-
SPARC using ProLog by BIM) takes a few ment, the planner computes the average
seconds for each cycle; this time stays ap- of the situations resulting from the indi-
proximately constant, also when the knowl- vidual actions of opponents, thereby ig-
edge base contains more rules. These prelim- noring their combined effects. Two pos-
inary experiments are described in detail in sibilities to avoid the problem include 1)
[Swennen, 1991; Chaouat, 1991; Bleken, 1992; learning more complicated rules that take
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into account all agents on the board, and ductive logic programming techniques) to gen-
2) rather than computing the effects of erate rules, a knowledge base manager to learn
the opponents in parallel, propagate the from experience, a control module that learns
effects of the opponents, by using sequen- an evaluation function.
tial prediction. To the best of our knowledge, the applica-

tion of multi strategy learning to learn how
to survive is new. Nevertheless, the learning

I I AI I Istrategies are related to other work. MoreIm: I /specifically, the rule generator relies on in-
"aI. Av..of m ductive logic programming [Muggleton, 1992;
40 ... i "De Raedt, 1992; Plotkin, 19701 techniques that

work from specific to general; the evaluation
function learner addresses a problem related1 2 3 4 S 6 7 8 9 10 11 to that of credit assignment in the bucketM." cca.W W C7CWS brigade algorith of [Holland, 19861; it is also

related to the early work of Arthur SamuelFigure 4: results of learning (Samuel, 19671; the knowledge base manager

is related to recent approaches in explanation
14M, based learning that remember only the most
12 ---- -promising rules; and the integration of plan-

ji, _.ning with learning is related to reinforcement
--- l--- J da ,.0Wil learning.

4W*---ExWu &mew
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0 Spells rJj change the current situation e Agent-on ( pos, agent);
of the game; killing spells have the same . Item-on ( pos, item);
effect as hitting all opponents simultane- * Obstacle-on ( pos
ously; teleport spells change the current
situation randomly; and cursing spells * Possessing (item);
add or remove curses from objects. o Wielding (item);

* Wearing (item);

List of Actions: * Cursed-by ( item, curse ) (only for items

"* move( position ):moving to a neighbour- possessed by learning agent);

ing position which is not an obstacle or * Un-Cursed (item ) (only for items posh

opponent. sessed by learning agent);

"* pick-up( item ): pick up an item on the * Alive (learning agent is alive);
current position. * Dead;

"* drop( item ): drop an item currently pos- * My-Kind ( kind ) (learning agent is of type
sessed. kind);

"* eat( food ): eat food currently possessed. * My-Energy ( energy ) (energy level of

"* hit( position ): hit an opponent on a neigh- learning agent);
bouring positiou. The hitting agent loses * My-Gold ( gold );
energy and the opponent may but need
not loose energy. c MyCurse ( curse ) (learning agent is

"* wield( handweapon ): wield a handweapon cursed;
currently possessed. * UnCursed;

"* release( handweapon ): release a * Kind-of.Agent ( agent, kind );
handweapon currently possessed. e Kind ( item, kind ); possible kinds are

"* wear( armor ): wear an armor currently gold, edible, armor, spell, wand, weapon.
possessed. e Kind-ofArmor ( item, kind ); possible

"• takeAofl( armor ): take off an armor cur- kinds are: boots, harness, helmet, coat,
rently worn. gloves.

"* cast( spell ): cast a spell currently pos- 9 Kind-ofWeapon ( item, kind ); possible
sessed. Spells can be cast only once. kinds are: hand-weapon, wand.

"* quaff( potion ): quaffing a potion cur- . Kind-ofEdible ( item, kind ); possible
rently possessed. Potions can be quaffed kinds are: food, potion.
only once. * Kind-ofHand-weapon ( item, kind ); pos-

"* zap( wand ): zap a wand (currently sible kinds are: sword, dagger, axe.
possessed) to a neighbouring position. e Kind-ofWand ( item, kind ) possi-
Wands can be zapped only once. ble kinds are: wand-of-polymorph,

wand-of-teleport, wand-of-death.
Appendix 2: representations of e Name-of-spell ( item, name );

situations • Curse-of.potion ( item, curse);

The following predicates are used to describe * No.Agent-on ( pos );
situations, rules and examples. 9 NotItem.on ( pos, item);
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"* No.Obstacle~on ( pos);

"* Not-Possessing ( item);
"* Not-Wielding ( item );
"* Not-wearing.such.an -armor ( item);

"* NotCursed-by (item, curse);

"* Not-MyCurse ( curse );

The literals starting with Not and No are the
negations for the corresponding positive liter-
als. To reason about the energy and the gold
of the system agent, there are some elemen-
tary literals for comparison such as ess-than,
equal-to and less-than.or.equal-to.
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This paper presents MUSKRAT, a Multistrategy Knowledge elicitation, Knowledge base
Knowledge Refinement and Acquisition refinement
Toolbox. MUSKRAT is an open architecture
which supports the integration of problem
solvers and various types of knowledge ac- 1 Introduction
quisition tools, including knowledge elicita-tion macinelearing andknoledg b~ Research into knowledge-based systems orig-
refinement tools. All the knowledge acquired inally focused on building inference engines.refisexenttoolss inl ahe C nome K edg It then became progressively clear that theRepresentation Language (CKRL), and can be most significant bottleneck was not in the in-Repesetaton ang age(CK L),andcanbe ference engine but in the acquisition of
shared by several problem solvers; each tool feowneege but inethe acquisiio of
translates its internal knowledge representa- knowledge. After considerable experience of
tion formalism to or from CKRL. An advice- carrying out this process, one valuable insight
giving system compares the requirements of was that knowledge based systems which at-
the selected problem solver with available tempt to address the same sot of task have
sources of information (knowledge, data, hu- much in common, and that once the type of
man expert...) and recommends one or more problem solver was determined it was much
knowledge acquisition tools, based on a easirede w hat doanmnw ed
knowledge-level description of each tool. We required. Several researchers have attempted
describe the MUSKRAT architecture, and illus- to build taxonomies of problem solvingtrate it with a detailed description of a proto- (Clancey, 1985; Hayes-Roth, 1983), and

typecurentl beng mpleentd, wichin- others suggested that specific tools should betype currently being implemented, which in- bultoaqiek wedefracpolm
cludes three problem solvers and four knowl- buit to acui erkoweg fra pol
edge acquisition tools. solving method (McDermott, 1988).

Many tools and techniques have been devel-
oped for the systematic acquisition of domain
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knowledge, including knowledge elicitation
(KE) methods to acquire knowledge from a 2 Background
human expert, machine learning (ML) algo-
rithms that infer knowledge from data, and 1This work originated in the Machine Learning

knowledge base refinement (KBR) tools tt Toolbox (MLT) project. The aim of this pro-

refine knowledge already in a usable form. As ject was to bring machine learning into use on

these tools become more sophisticated and a real industrial problems, by (among other

enhanced to deal with real-world applications, tasks) building a collection of ML tools. This

their differences tend to become less apparen toolbox also includes a number of support

KE tools, which were originally simple im- tools, including an advice-giving system, the

plementations of manual methods, now per- Consultant, which we developed at the

form more tasks automatically, while ML and University of Aberdeen (Craw, 1992). The

KBR tools now recognise that many interest- Consultant questions its user about the task he

ing tasks cannot be completely automated and wants to solve, the data and background

so interact more with their users. This, in knowledge he can provide, etc., and recom-

addition to the large number of available mends one or more suitable learning tools.

Knowledge Acquisition (KA) techniques, Although it was found to perform sadsfacto-

makes it very difficult for many users to rily, the Consultant suffers from a major limi-

choose an appropriate tool for their particular tation: it has no understanding of the problem

application, especially when more than one is that the user wants to solve in his application
domain. The user must first decide what
knowledge is required to solve his problem,

Our aim is to relate the several types of prob- i.e. define a learning task, and only then can
lem solvers, and hence the kinds of knowl- the Consultant help him with the choice of a

edge that they require, with these tools. We suitable tool. In other words, the Consultant is
would then be able to give advice on what told what the user wants to know, not what he
tools should be used to acquire, transform or wants to do.
refine the knowledge so it can be used in aparticular problem solver. Having a model of the target problem solver

would be useful, not only to help the user
This paper presents MUSKRAT, a MUltiStrategy specify his learning task, but also to guide the
Knowledge Refinement and Acquisition Tool- KA process itself. This is generally acknow-
box. MUSKRAT is an open architecture which ledged in the KE community (McDermott,
supports the integration of problem solvers 1988).
and KA tools, and assists the user with the se-
lection of the most suitable KA tool. Section 2 "Currently the main theories of knowledge ac-

introduces some motivations for MUSKRAT in quisition are all model based to a certain extenL

relation with other work; section 3 describes The model based approach to knowledge acqui-

the MUSKRAT architecture; section 4 discusses sition covers the idea that abstract models of the

the various problem solvers and KA tools tasks that expert systems have to perform can

included in the prototype that we are currently highly facilitate knowledge acquisition." (van

developing. Heijst, 1992)
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(Mitchell, 1992), SOAR (Laird, 1991)). In
However, this is not always accepted by ML both cases, the knowledge base is tied to a
researchers, and ML systems that use an ex- particular problem solver. In contrast,
plicit model of problem solving are rare MUSKRAT integrates existing, stand-alone KA
(Ganascia, 1993). The reason is that an ab- tools with existing, stand-alone problem
stract, knowledge-level model of a problem solvers, so that the knowledge can be tested
solver is usually not sufficient to guide ML ef- independently and shared among several
fectively. The knowledge acquired by "man- problem solvers. Knowledge sharing and
ual" KE can easily be adapted (if necessary) reuse is further supported by the fact that all
so as to fit the requirements of a particular the knowledge acquired by the system is ex-
problem solver (e.g. in terms of knowledge pressed in a single representation language,
representation), but that obtained from an au- called CKRL.
tomatic ML tool can only be used directly if
the detailed needs of the problem solver are Finally, the selection of an appropriate KA
known in advance. Instead, the requirements tool is also an issue in many multistrategy
are usually assumed and encoded implicitly in learning systems (Michalski, 1991). Some
the ML tool. This is even clearer with knowl- multistrategy systems include several ML
edge base refinement tools, which must gen- techniques (for instance both symbolic arid
erally run a problem solver on the knowledge sub-symbolic algorithms) which are applied
they refine in order to evaluate their modifi- successively to generate a single knowledge
cations. base. In MUSKRAT, the knowledge to be ac-

quired is structured into several knowledge
For these reasons, we decided that MUSKRAT, bases, each of which is obtained with an ap-
a knowledge acquisition toolbox which in- propriate technique. Other multistrategy sys-
cludes KE, ML and KBR tools, should also tems include several similar techniques and
include problem solving tools, which will use highly discriminating selection criteria to
serve as the targets of the KA process. This is select the most suitable one, but we are not
in contrast, for instance, with KEW, the aware of any system that covers as broad a
Knowledge Engineering Workbench produced range of techniques as MUSKRAT, including
by the ACKnowledge project (Reichgelt, KE, ML and KBR tools.
1992). Since KEW focuses on KE techniques,
it does not include a problem solver, but in- 3 The MUSKRAT Architecture
stead uses Generalised Directive Models to
guide tool selection (van Heijst, 1992). The acquisition of control knowledge (i.e. a

problem solving method) and domain knowl-
The integration of learning and problem edge can be performed in any relative order.
solving is also a major issue in the field of in- In the MUSKRAT framework, we assume that
tegrated systems (SIGART, 1991; VanLehn. the selection of one or several KA techniques
1991). Some such systems integrate one or proceeds along the following lines:
several KA tools with a problem solver (as in
PRODIGY (Carbonell, 1991)). Others inte- 1. Identify an application task, i.e. a problem
grate KA and problem solving in a single to be solved in a particular domain.
component, using a uniform technique (THEO
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face between KA tools and problem solvers.
2. Select a suitable problem solver to solve We define a KB as any body of knowledge

this task. If no single problem solver can required by a problem solver. This includes
be identified, it may be necessary to split not only "conventional" knowledge bases (e.g.
the application task into sub-problems that rule sets), but also representation languages,
can each be solved by a problem solver, control heuristics, etc.

3. For each selected problem solver, deter- In MUSKRAT, all KBs are expressed in the
mine what knowledge bases are required. same representation language, CKRL. CKRL
This amounts to a knowledge-level analy- (Common Knowledge Representation
sis of each problem solver, which needs Language) is an information interchange lan-
only be done once since it does not depend guage developed as part of the MLT project
on a particular application task. (Morik, 1991). It is not directly execut'•-1e,

but consists of declarations that can be
4. For each required knowledge base, com- lated into a tool's internal representatiot,

pare the problem solver's requirements ensure that this translation is possible into a
with whatever knowledge sources are broad range of representation languages, and
available (human expert, examples, exist- unambiguous, CKRL entities are defined at
ing knowledge, etc.). This defines one or the epistemic level (Brachman, 1979): con-
more KA tasks. cepts, instances, relations, properties, sorts,

5. Select a KA tool capable of solving each rules, etc. Although CKRL was originally de-

KA task, i.e. bridging the gap between re- signed as a communication medium for ML

quired and available knowledge. This sup- tools, it is general enough to be useful in

poses a preliminary knowledge-level anal- many situations where knowledge is to be

ysis of available tools, transmitted or processed in a number of ways.

ythe selected KA tool. Our choice of a uniform knowledge represen-
tation was motivated by considerations of

These steps can be repeated in a cycle, espe- knowledge sharing and reuse: a KB can be

cially if information acquired in step 6 is used by several problem solvers, even if this

needed to refine the decisions made in step 2. was not anticipated when the KB was created.
It also allows the integration of new problem

The MUSKRAT system is designed to support solvers and KA tools into MUSKRAT at the
steps 3 to 6. It assumes that a problem solver cost of implementing a single interface to or
has been selected for a particular task or sub- from CKRL. An additional advantage of
task, and directs the acquisition of knowledge choosing CKRL is that some of the KA tools
for this particular problem solver. The system in our prototype are also part of the MLT, and
consists of any number of problem solvers, therefore already express their output in this
any number of KA tools, and a guidance language (see section 4.2).
module, the KA selector.

The architecture is centred around a set of
Knowledge Bases (KBs), which is the inter-
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Figure 1: Ov iew of the MUSK AT archite e

In figure 1, circles represent bodies of knowl- This architecture can be used at two different

edge and boxes represent MUSKRAT's compo- stages of the problem solving cycle: (a) the

nents. There are three types of boxes: thin selection of suitable tools, and (b) the use of

boxes represent problem solvers, black boxes the tools to acquire knowledge and solve the

represent KA tools, and thick boxes represent problem. We will now describe these two

advice-giving systems. The types of knowl- stages in detail, and explain the role of each

edge provided to MUSKRAT are an initial component.

problem description (top) and various sources
of problem solving knowledge (bottom left), The tool selection process starts with an initial

and the system is used to produce one or more description of the problem. An advice-giving

KBs (middle). system, the PS selector, helps the user with

the selection of a suitable problem solver. The
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PS selector is not currently part of MUSKRAT, which insight into the new problem can be
but a module similar to KEW's advice and gained. Alternatively, if the problem is to di-
guidance module (van Heijst, 1992) should be agnose faults in a complex system, "available
usable herem data" may refer to a model of the system,

which is useful (or perhaps necessary) to per-
Once a problem solver has been selected, form diagnosis. Note that the distinction be-
MUSKRAT knows which KB(s) are required. tween knowledge and data is not intrinsic but
For instance, in figure 1, if we want to use the depends on the KB requirements. For in-
first problem solver (Problem Solver 1) we stance, a set of past cases is considered as
will have to acquire three KBs: KB 1, KB2 and knowledge if it is to be used by a case-based
KB3. At this stage, each KB is only specified reasoner that can use it directly, but it is only
in terms of its functionalities and representa- data for a rule-based system which is unable
tion, as required by the problem solver. These to reason from cases. Finally, an expert is a
requirements are expressed in a formalism person who can provide various forms of
which provides descriptors for both knowl- knowledge, possibly with the help of a KE
edge-level and symbol-level features. We are tool and/or a knowledge engineer.
currently defining such a formalism to de-
scribe the effects and requirements of the par- The KA selector is the central component of
ticular tools included in the MUSKRAT proto- MUSKRAT. It compares the requirements of
type (section 4). Since these tools cover a the selected problem solver with the charac-
fairly broad range of techniques, we expect teristics of available knowledge sources and
that our formalism will be easily ex- recommends the use of one or more KA tools.
tended/refined to be applicable to most exist- For that purpose, it has a knowledge-level de-
ing KA techniques. scription of each available KA tool and per-

forms a means-ends analysis to decide which
The next step is to identify the available one is most capable of reducing the differ-
knowledge sources (bottom left in the figure). ences.
We consider three broad categories of knowl-
edge sources: available knowledge refers to Since there are three types of knowledge
knowledge that is already in the form required sources that the KA selector can decide to use
for a KB, e.g. a set of rules. It may be directly or not use, eight (23) combinations could be
usable or require further transformation or re- considered. For each combination, a suitable
finement. Note that knowledge is seldom KA technique must be identified. The four
available initially, but when MUSKRAT is used most common combinations are represented in
iteratively as part of a problem solving cycle, figure 1 by vertical lines ending in each of the
"available knowledge" refers to that acquired four KBs:
during a previous iteration. Available data
refers to data that is relevant to the problem 1. Available knowledge exactly matches re-
and from which useful information could be quired knowledge, and can thus be used
extracted, although it does not meet the re- directly, or possibly with some syntactic
quirements of the KB. Typically, this may data manipulation (not represented). This
consist of past cases, i.e. previously solved is shown as an empty black box, repre-
problems similar to the one at hand, from senting direct transfer of knowledge.
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2. Available knowledge can be used by the
selected problem solver, but does not pro-
duce satisfactory results (this normally oc-
curs when MUSKRAT is used iteratively,
and the knowledge in question was ob-
tained and tested during a previous itera- f .b

dion). A KBR tool can then be used to re- e" =h.J
fine this knowledge. A domain expert is
usually required, either during the refine-
ment process or only to validate the result-
ing KB

3. If there is not enough or no available
knowledge but other data is present, an -
ML tool can be used to extract useful
knowledge. Depending on the selected ..

tool, existing (incomplete) knowledge may O
also be used, and an expert may be re- (NL
quired to interact with the ML tool. In any &
case, an expert is almost always required Fig= 2. Flow of infommion for tool seletion.
to validate the newly acquired KB.

4. If no other source is available, the KA se- Once appropriate problem solvers and KA
lector still has the resource to recommend tools have been selected, they can be used to
a KE tool, which will attempt to obtain the actually solve the problem. Since MUSKRAT
required knowledge directly from an ex- only performs the integration of independent
pert, using a more or less systematic tools, it provides no support with the use of
methodology, individual tools. At this stage, its role is lim-

ited to the communication of knowledge be-
Another plausible situation (not illustrated) is tween different tools. The flow of informa-
that no tool is available to produce the re- tion, illustrated in figure 3, shows knowledge
,quired KB. In this case, the KA selector will coming out of knowledge sources, being pro-
merely describe the requirements to an expert cessed by KA tools, and finally used by a
and let him provide this knowledge problem solver. It is the user's responsibility
"manually". The help of a knowledge engi- to evaluate the solution obtained by the prob-
neer will usually be necessary in this case; it is lem solver and, if necessary, to start a new KA
also desirable in the previous cases. cycle.

The tool selection process is summarised in
figure 2, where thick arrows represent the
flow of information which converges from
two different directions into the KA selector.
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o 4.1 Problems and problem solvers

The domain that we consider is the planning
of a meal. It includes three distinct problems:
selecting dishes given a set of constraints,
analysing and criticising a selected menu, and

~- 1 0 P scheduling the meal preparation given time
constraints and limited resources.

I Enhanced version of these problem solvers
will later be applied to similar, though much
larger, problems in the domain of flexible
manufacturing, namely the customised design
of mechanical devices under specific con-
straints, analysis of existing designs, and
flexible workshop scheduling.

4.1.1 Constraint satisfaction

The problem can be described as follows:
""bow given a set of constraints, select a menu (from

a pre-defined list of dishes) that satisfies the
largest number of constraints. Examples of

4 The MUSKRAT Prototype constraints include: "the meal should include
a starter, a main course and optionally a

"To illustrate our approach, we have chosen a dessert", "select a vegetarian meal", "at most
"toy" domain where several problems can be one dish may include sea food", "the total
identified which require different problem price must not exceed N", etc.

solvers, but where some of the KBs required

can be shared by at least two problem solvers. If all the constraints cannot be met simultane-
We are currently developing a prototype tool- ously, the system must decide which con-
box including three different problem solvers straint(s) should be relaxed first.
and four KA tools, selected to suit these par-
ticular problems. All these tools are described The KBs required to solve this problem are:
in more detail below.

Al. A set of descriptors (attributes) used to
It should be noted that, since the main focus represent dishes. We only use boolean-
of our work is on knowledge acquisition and numeric-valued descriptors.
rather than problem solving, we decided to Examples include "has-meat", "warm",
keep the problem solvers fairly simple, even if "is-starter", "cost", etc.
this implies that we can only solve simplified A. A set of dish descriptions. A description
versions of our original problems. consist of aist ofinrediens , A theconsists of a list of ingredients, and the
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values of general descriptors such as "is-
soup" or "warm". The KBs required by this problem solver are:

A3. A set of rules that infer the values of de- B 1. A set of dish descriptors (identical
scriptors from ingredients and/or other to Al).
descriptors. These rules are used to gen-
erate complete internal representations of B2. A list of all the dishes that may appear in
dishes from incomplete user-provided menus (identical to A2).
descriptions. Examples include "beef e B3. A set of description expansion rules
ingredients =, has-meat", "has-meat =, (identical to A3).
-,vegetarian" and "cost > 5 =* expen-
sive". B4. A set of rules that derive comments and

recommendations from descriptors, for
A4. Predefined constraints that can be used in instance "count(seafood) > 1 * corn-

queries, such as "vegetarian-meal S ment(too-much-seafood)". Each corn-
all(is-vegetarian)" or "cheap-meal S ment is associated with a canned piece of
sum(cost) < £6". A query can combine English texL
any number of predefined constraints and
user-defined constraints written using a 4
fixed set of operators. Once a menu has been selected, this problem

A5. Meta-rules that tell the system which solver can be used to generate a plan to pre-

constraint to relax when all the con- pare it. Each dish has a recipe, which is a

straints cannot be satisfied simultane- fixed, partially ordered list of actions. The

ously. For instance, a rule might say that problem is to set the starting time of the tasks

cost-related constraints are less important involved in the recipes of all the dishes in the
than dietary constraints, or that the num- menu, so as to meet a set of time and resource

ber of courses is the most important con- constraints. A time constraint may be that two

straint. dishes must be ready and warm at the same
time; a resource constraint may be that only

4.1.2 Design analysis one oven is available, therefore at most one
dish can be baked at a time.

The purpose of this problem solver is to take a
menu generated by the first problem solver or The KBs required by this problem solver are:
any other source, and to issue a list of com-metand suggestions for possible improve- Cl. A list of dishes with associated recipes.
ments, a typions fromsbhimove This is a superset of A2, since a recipe
ments.includes a list of ingredients and an or-
could be "This meal supplies 2/3 of the rec- dese a list of inga
ommended daily allowance of carbohydrates", dered list of actions.
or "This meal is unbalanced because it con- C2. A list of available resources, and the
tains two sea food dishes; you should replace amount of each resource that is available.
fish soup with vegetable soup". These resources are supposed to be per-

manent and usable for any number of



116

tasks (e.g. an oven); resources that are though those can be more adequately acquired
consumed by a particular task are listed by KBG (see below).
as "ingredients". Ingredients are always
assumed to be available in sufficient 4,2.2 KBG
amounts, since they have to be purchased KG (Bisson, 1992) is an ML clustering and
for each dish.

generalisation tooL It can either take unclassi-

4.2 Knowledge acquisition tools fled examples and cluster them according to a
particular, flexible metric, or take classified

Unlike the above problem solvers, which are examples and induce discrimination rules. In
being implemented as part of this work, the both cases, it can also use background knowl-
KA tools described in this section were devel- edge in the form of rules to complete example
oped independently by other researchers. Our descriptions. An interesting feature of KBG is
goal is to show that they can be made to work that its learning examples and output rules are
together to produce complementary KBs, with expressed in (restricted) first-order logic,
minimal modifications. One significant en- which means in particular that all the exam-
hancement that has to be made, however, is ples need not be represented by the same de-
that they must all express their output in the scriptors.
same knowledge representation language,
CKRL. This is already the case for those In our example, KBG is used to infer rules for
which are part of the MLT, namely APT and A3 (and B3): given a small number of com-
KBG. plete dish descriptions, it finds correlations

between descriptors that can later be used to
4.2.1 Repertory grid complete new (incomplete) descriptions.

The repertory grid is a KE technique derived It can also be used to infer control rules for
from cognitive psychology (Kelly, 1955). It A5. In this case, a learning example is a set of
provides a systematic way of interactively constraints and an indication of which one
eliciting elements (examples) and constructs should be dropped. Since constraints are
(descriptors) from an expert. Although it is complex objects that cannot be represented as
fundamentally a methodology, it can be sup- attribute/value pairs, KBG's first order repre-
ported by software tools such as Tacktix sentation is very suitable for this task.
(Reichgelt, 1992) that not only acquire this
knowledge but also compute similarities and Finally, its clustering and concept formation
correlations between elements and between ability can be used to select useful predefined
constructs. constraints (A4). Since such constraints are

provided only for user convenience, it is use-
In our application, this tool is used to acquire ful to detect patterns that occur frequently in
simultaneously dish descriptors (Al or Bl) user-defined constraints, and add them to the
and descriptions (A2 or B2), since these KBs set of pre-defined constraints. KBG can help
must be acquired directly from an expert. In with this pattern detection.
addition, correlations between descriptors
suggest possible rules for A3 (or B3), al-
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4.2.3 APT 4.3 Summary

APT (Nddellec, 1992) uses a combination of The following table summarises the relation-
KE and ML techniques to acquire problem ships between MUSKRATs components. For
solving rules. It starts with a domain theory, in each knowledge base, it shows which KA
the form of a semantic network, and possibly tools can generate it and which problem
an initial set of rules. When it cannot solve a solvers can use it.
problem with its rules, it asks the user for a
particular solution, then uses the domain the-
ory to generalise it. The user is constantly re- KB created by used, by

quested to validate the rules generated by the Al, El Grid coas sat. analysis
system, and he can extend the domain theory A2, B2 Grid consL saL, analysis

if necessary to enable APT to infer correct A3, B3 KBG, Grid coasL sat, analysis
generalised rules. A4 KBG onst, saL

A5 KBG const saL.
When a limited domain model is available, B4 APT, KRUST analysis
APT can be used as a KE tool to acquire rules C1 APT scheduling
and enhance the model. When an important 02 (no tool) scheduling
set of rules is available, it can be seen as an
interactive KBR tool. These capabilities, to- 5 Conclusion
gether with its rich knowledge representation
(semantic network) make it suitable to acquire We have presented an architecture that allows
analysis rules (B4), as well as recipes (Cl) the integration of independent problem
that can be regarded as problem decomposi- solving and knowledge acquisition tools into a
tion rules, uniform framework. Integration is achieved

by means of two common languages: a
4.2.4 KRUST knowledge-level description of the tools (used

by the KA selector to provide advice and
KRUST (Craw, 1990) is an automatic KBR guidance), and a uniform representation of
tool. Given a set of Prolog-like rules, and an data (which encourages knowledge sharing
example incorrectly classified by these rules, and reuse). A prototype is currently being im-
it considers many possible remedies plemented to validate this architecture. In par-
(generalising or specialising rule premises, re- ticular, we will need to evaluate the
ordering rules, adding new rules...), tests them extensibility of the system. When a new tool
against known cases and implements the most is added, a knowledge-level description of its
successful ones. It occasionally consults an functionality must be provided. It is at present
expert to validate its recommendations. difficult to estimate the effort required to

derive such a model. A challenging goal for
In our prototype, KRUST uses examples of future research would be to generate, or, more
menus commented on by an expert to refine realistically, to refine, knowledge-level
the "comment" rules (B4). models of problem solvers by letting the

system perform its own experiments. This
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Abstract 1 Introduction
The paper is concerned with supervised learning It i
of numeric target concepts. The task is to learn s being recognized by more and more re-
to predict or determine the exact values of some searchers that qualitative background knowl-
numeric target variables. Training examples edge is naturally available in many domains,
may be described by both symbolic and numeric and that learning algorithms are needed that can
predicates. General domain knowledge may be effectively use such knowledge, even if it is in-
available in qualitative form. The paperpresents complete and inconsistent, and generally ab-
a general learning model for such domains. The stract and imprecise. Some approaches to this
model integrates a symbolic learning compo- problem have been proposed in the recent past,
nent, which is based on a multi-instance plausi- most of them centering around the notion of in-
ble explanation algorithm, and an instance- complete or plausible explanations (see, e.g.,
based learning component, which storesbase leaningcompnent whih stres Tecuci, 199 1; Tecuci & Michalski, 199 1; Wid-
instances with precise values and predicts new Tec, 1991; te m ans 1 ; -
values by interpolation. The symbolic compo- me 1 )al the se mets andisyste as-
nent can use available qualitative background sume that the target concepts are discrete classes
knowledge; it learns sub-concepts that partition of objects, to be described by classification rules
the space for the underlying instance-based which assign a new object to its appropriate
method. A realization of the model in a system class.
named IBL-Smart is then described. The sys-
tem has been applied to a complex task from the However, there are also many learning prob-
domain of tonal music, and some experimental lems with numeric target concepts, i.e., where
results are reported that demonstrate the effec- the task is to predict more or less precisely the
tiveness of the method. values of some numeric variables. The training

Key words: Knowledge-based learning, instances may be described by both symbolic
instance-based learning, integrated learning, and numeric predicates. In such domains, too,
qualitative models, general domain knowledge may be available
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that relates certain parameters, but maybe only the examples in several independent instance
in a qualitative, imprecise way. As an example, spaces and uses the learned symbolic rules to
consider typical prediction tasks such as stock decide which instance space is relevant to a giv-
market prediction or the prediction of energy en example. Values for new examples are then
consumption or demand in some power plant. predicted by numeric interpolation in those
One can easily conceive of partial qualitative instance spaces that are classified as relevant by
models of these domains that would capture the associated symbolic rules.
some of the relevant domain knowledge. Intelli-gentleanersshold b abe toutiize ucha1- The motivation for this research was a practicalgent learners should be able to utilize such ab- a d c m l x p o l m i h o a n o o astract knowledge, and complex problem in the domain of tonal

music, namely, learning to apply expressive in-

With few exceptions (e.g., regression trees - terpretation to a given piece of music, i.e., tody-

Breiman et al., 1984), 'classical' symbolic namically vary tempo and dynamics in order to

learning methods cannot be used for such nu- produce a musically satisfying performance.

meric problems (unless the domain of the nu- The target concepts in this problem are neces-

meric target concept can be abstracted into dis- sarily numeric (exactly how much variation

crete, qualitative subranges without loss of rele- should be applied to a given note), and there is

vant information). In particular, plausible ex- some natural domain knowledge that is relevant

planation methods capable of utilizing qualita- to the task. The domain knowledge comes from

tive domain knowledge, like those mentioned music theory and is inherently qualitative and

above, are not applicable to such domains; they incomplete, but describable in explicit form.

assume discrete target concepts, and it is not The model has been implemented in a learning

clear how the qualitative background knowl- system named IBL-Smart (for reasons that will
edge should be related to the precise numeric in- become obvious soon). We will first present the
formation in the data. general learning model, then describe its real-

ization in the system IBL-Smart, and illustrateThe topic of this paper is a new learning model it applicability with a description of our partic-

(and an implemented system) that can learn nu-

meric target concepts while taking maximum ular musical application and some experimental
results. Our approach was strongly inspired by

advantage of available qualitative dideas presented in (DeJong, 1989), and the lastknowledge, given that the problem and the tar-knowedg, gien hatthe robem ad te ~ section will relate our system to that and other
get concepts satisfy some basic assumptions. woro.

The approach consists essentially in using a

symbolic learner to partition the space for an
instance-based, numeric method that is used to 2 The General Model
predict precise values of the target variables.
The symbolic learner produces plausible ex-
planations for discrete subconcepts; the ex-
planations (and the extracted rules) are based This paper deals with supervised learning of nu-
both on qualitative background knowledge and meric target concepts. More precisely, the class
on empirical information from the training data. of learning problems we are interested in can be
The underlying instance-based method stores defined as follows:
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Given: a set E of training examples, described The learning model we are going to introduce in

in terms of a set of operational predicates P, the next section includes a symbolic learning
where we distinguish symbolic predicates component that can utilize qualitative back-
PS and numeric predicates (attributes) PN. ground knowledge for generating plausible ex-
Thus, PS U PN = P. Also attached to each planations. For this method to be applicable, we
example eeE is a numeric attribute T(e,v) need to make the following
(the target attribute) with known value v. Assumptions:
(This replaces the classification in symbol-
ic supervised concept learning.) As v is a 1) We assume that there are some discrete, qual-

function of (the description of) the itative sub-concepts Ti(X) of the target con-

instance, we will also write v = T(e). Note cept T(X,V) that can naturally be distin-

that so far, there are no negative instances in guished, where a sub-concept is defined by a

this scenario. more or less clearly distinguished subrange
of the function value V.

Find: a set of general rules that predict, for any 2) We further assume that it is these discrete
given object o described by predicates eP, sub-concepts that are related to operational
a numeric value v = T(o), based on the de- predicates P by the available background
scription of o. knowledge BK.
(As in symbolic concept learning, we might 3) Finally, we assume that examples of the dis-
require these rules to be complete (predict a crete sub-concepts Ti can be distinguished
value for every example) and correct (pre- using the operational predicates P.
dict the correct value for each example) For example, in our energy demand prediction
with respect to the training data (cf. Mi- task, such subconcepts might be extreme-
chalski, 1983). However, this may not be Iylow(Demand) or higher thancapacity(De-100%(Dmad deirbl orighestban inpaety(De-
100% desirable or feasible in ever ap- mand); in the musical domain described below,
plication domain.) there are natural qualitative subconcepts such as

In addition, there may be some domain-specific crescendo(Note) and diminuendo(Note) (in-

background knowledge (BK) relating the target crease or decrease, respectively, in loudness rel-

concept T(XV) (or some abstractions ofT - s ative to the current level) or accelerando(Note)

below) to some of the operational predicates P and ritardando(Note) (increase or decrease in

in specific ways, possibly via some intermediate tempo). 1)

non-operational predicates. This knowledge The motivation for this assumption is that these
might be in the form of rules, as in standard EBL discrete, qualitative, symbolic sub-concepts
domain theories (Mitchell et al., 1986) or in the will be the target concepts for the symbolic
form of qualitative knowledge items as in (Wid-
mer, 1993). The knowledge need not be correct
or complete, nor need it be quantitative and pre- The boundaries between these subconcepts will
cise. An additional constraint then is to find sometimes have to be defined somewhat arbitrarily.
solutions (rules) that conform as closely as pos- This is not necessarily a problem, as the results of the

symbolic learning component are not used for classifi-
sible to BK while also consistently describing cation, but only to find appropriate sets of instances for
the training data E. comparison. Section 2.2 will make that cleare.
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learning component. Each of the original train- The model were are proposing here consists of
ing instances will be assigned to one of the sub- two components: a symbolic learning compo-
concepts ri, depending on its value v = T(e), and nent that learns to distinguish different types of
the symbolic learner will learn general rules for situations and can utilize all the available do-
each sub-concept. Note that in this way we also main knowledge, and an instance-based corn-
introduce negative instances for each target con- ponent which stores the instances with their pre-
cept Ti, namely, all examples assigned to some cise numeric attribute values and can predict the
Tj where j # i. target value for some new object by numeric in-

terpolation over known instances. The connec-
tion between these two components is as fol-
lows: each rule (conjunctive hypothesis)

2.2 The learning model learned by the symbolic learning component de-

scribes a subset of the instances; these are as-Returning to our general learning problem, one smdt ersn n atclrsbyeo h

waysumed to represent one particular subtype of theway o aproah itwoud beto impl do concept to be learned. All the instances covered

instance-based learning in the entire descrip- by a rule are given to the instance-based learner

tion space spanned by all the available attributes
to be stored together in a separate instance

instne sy oulc d nuestoric. Thatg wis theirai space. Predicting the target value for some new
instances would be stored along with their corn- ojc hnivle acigteojc gis

plet decrition, ad te vlue = ~o)for object then involves matching the object against
the symbolic rules and using only those numeric

some new object o would be predicted by some instance spaces (interpolation tables) for predic-
nearest neighbor method in the space of stored tion whose associated rules are satisfied by the
instances, possibly with some numeric inter- to hs soitdrlsaestsidb hpostanc.There apeoseveralbproblems with teis iobject. In this way, the system learns several dis-polation. There are several problem s with this tn ti sa c p c s w e ed fee tl w n
approach. First, it is not always clear how to de- ritinstan s pace where differentvise a similarity metric that combines symbolic regularities may apply. In fact, different

instance spaces may contain examples with con-
and numeric attributes in a meaningful way, es-
pecially when the attributes are of various types flicting values.
and inhomogeneous with respect to domain size
etc. Second, the only way to integrate available More precisely, the target concepts for the sym-
qualitative background knowledge into the bolic learning component are the discrete, qual-
learning process is via the similarity metrics. itative sub-concepts Ti mentioned in section
This may not be the most natural way to express 2.1. The symbolic learner learns general condi-
one's domain knowledge. Moreover, instance- tions that characterize or discriminate between
based approaches suffer from the problem that these discrete classes. These conditions may re-
they do not produce comprehensible concept fer to both symbolic and numeric predicates.
descriptions. On the other hand, it is clear that The symbolic learner tries to use all the avail-
some kind of instance-based interpolation corn- able qualitative background knowledge. The re-
ponent is needed in such domains, as the task is sult produced by this component is a set of gen-
to predict numeric values from continuous do- eral rules that group the examples into clusters
mains, which is impossible with discrete, sym- by assigning them to different sub-classes of the
bolic concept descriptions. target concept.
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The numeric, instance-based component takes 3 Realization of the Model:
the original training instances E as clustered by IBL-Sart
the symbolic learner, and creates a separate
instance space from each cluster. Instances are The general method has been implemented in a

stored with all their numeric attributes and with system named IBL-Smart and has been tested in

their precise numeric target values. The dimen- the context of a complex musical problem. In

sions of such an instance space are thus defined accordance with the model, IBL-Smart consists

by the numeric attributes PN. For some new ob- of two components. The first of these - the

ject o, the target value v = T(o) can then be pre- symbolic learner - has been specifically de-

dicted by selecting the appropriate instance signed to be able to use qualitative domain

space (by using the generated symbolic rules as knowledge.

filters), and applying some numeric interpola-
tion method over the stored instances. 3.1 The symbolic learning component

Several comments seem to be in order here: The symbolic learner in IBL-Smart is a multi-
t symbolic learning ple-instance plausible explanation system

First, we assume that the based on the search algorithm of ML-Smart

component ma,, refer to predicates from both G(Bergadano & Giordana, 1988). It performs
PS and PN for its hypeotheses. It is not realistic top-down discrimination, integrating and inter-
(nor necessary) to expect that the discrete sub- leaving deductive and inductive operationaliza-
concepts Ti can always be distinguished by ref- tion steps. The basics of the search are described
erence to symbolic predicates only. Second, we below (section 3.1.1). For IBL-Smart, we have

do assume that after clustering the examples ac- extended MLSmr's discrimination algo-
cording to sub-concepts (and sub-sub-con- rithm to also use qualitative background knowl-
cepts, if these are disjunctive), interpolation edge in the form of general dependency stae-

over the numeric attributes in the resulting ments and directed qualitative dependency rela-
instance spaces is sufficient to predict sensible
target values. In other words, we assume that the
rules learned for the sub-concepts T, contain all

the relevant symbolic information. The dimen- 3.1.1 The basic search algorithm

sions of the instance spaces are only attributes The learner starts with a nonoperational defini-

from PN. Any other solution would require tion of the target concept (some discrete sub-

some non-standard interpolation scheme to ar- concept Ti) and performs stepwise operational-
rive at numeric prediction values. If additional ization (specialization) by growing a heuristic

domain knowledge about attribute relevance is best-first search tree. Each node/partial hypoth-
available, the number of numeric dimensions esis in the search tree is accompanied by its ex-
may still be reduced, or some specialized simi- tension, i.e., the positive and negative examples
larity measures may be used for interpolation. covered by the operational part of the expres-
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sion. This makes it possible to use coverage The discrimination algorithm has been ex-
measures as part of the search heuristic, tended to utilize also numeric attributes in dis-

crimination steps. For numeric attributes, the
As in ML-Smart, each step in the search is ei- sytmina r split ptthatest

thersystem looks for a binary split point that best
thor discriminates between positive and negative

(1) a deductive application of a rule from the instances, as it is done in some decision tree

domain theory - replacing a non-opera- learners (e.g., Cesmik et al., 1987; Fayyad &

tional literal by its sufficient conditions as Irani, 1992). The general evaluation function H

defined by the rule; of the search algorithm is used to determine
what is the best split.

(2) an inductive generalization step - drop-
ping a predicate when the node covers too 31.2 Usng qualitative background
few positive instances and thus the hypoth- knowglege

esis seems too restricted; or

The search algorithm as described above corre-
(3) an inductive specialization step - adding sponds closely to the original ML-Smart meth-

some predicate to the operational part of the od as presented in (Bergadano & Giordana,
hypothesis in order to exclude some nega- 1988). In our system IBL-Smart, the algorithm
tive instances, has been extended so as to also utilize qualita-

Deductive operationalization steps (1) are pre- tive background knowledge, where available.

ferred. Inductive specialization (3) is done when IBL-Smart domain theories may contain two

deductive operationalization is not possible types of qualitative knowledge items:

(e.g., when no rule is available or applicable to (1) General dependency statements of the form
the examples). Inductive generalization (2) is depends on(Q,Ps) simply state that some
attempted whenever the current node covers too predicate 0 may be operationalized by us-
few positive instances (according to some ing a set of specified predicates Ps. This
threshold) and thus the hypothesis seems too re- type of general knowledge items has al-
strictive. The system then looks for a condition ready been proposed in (Bergadano, Gior-
that, if dropped, would increase the number of dana and Ponsero, 1989). In IBL-Smart,
instances covered by the hypothesis. All in all, such statements tell the search algorithm to
the search algorithm integrates deduction and use an entire set of predicates in one opera-
induction in a fine-grained manner. tionalization step: successors of a node are

created for all possible combinations of
The search is guided by a heuristic measure vales for the predicae cocuingtin

(evaluation function) H that measures the rela-

tive 'goodness' of nodes. The heuristic decides some positive instances covered by the

both which node is to be expanded next, and node.

how. Among other things (see below), it takes Such dependency statements are similar,
into account the coverage of the expression, i.e., but not identical, to determinations (Rus-
the ratio positive / negative instances covered by sell, 1987). They permit IBL-Smart to per-
the node, and also the absolute number of posi- form strictly constrained forms of look-
tive instances covered, ahead, and thus help overcome blindness
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effects that would arise if the algorithm per- potheses constructed by IBL-Smart will
formed purely empirical step-wise special- tend to include those attributes that most
ization. For instance, they can be used to closely approximate such linear constraints
describe relational clichis as proposed in between the data and the background
(Silverstein & Pazzani, 1991). knowledge.

(2) Directed dependency statements of the Note that, as with strict deductive rules, such

form q+(A,B) can be paraphrased as "the qualitative dependency statements need not

values of A and B are positively propor- necessarily be entirely correct in order to have a

tionally related" or "high (or low) values of positive impact on the search. If a dependency,

A tend to produce high (or low) values of B, statement is correct, it will lead to faster conver-

all other things being equal". Negative de- gence; if it is too general (the given predicates

pendency (q- (AB)) is defined analogous- are not sufficient to completely discriminate be-

ly. Such statements are, of course, re- tween positive and negative instances), subse-

stricted to functional predicates (or attrib- quent empirical discrimination steps will refine

utes) that assign values to objects. They it. And if it is overly restrictive (some predicates

were already used in (Widmer, 1991) and are not necessary), this may be repaired by em-

are similar to Michalski's M-descriptors pirical generalization steps, where the predi-

(Michalski, 1983). The notation was bor- cates that are too restrictive are removed from

rowed from Forbus' qualitative propor- the hypothesis to arrive at a more general partial

tionalities (Forbus, 1984). concept description.

By taking into account both such inference-de-
Incthed sependearch al re ofed ikeLgerar l d pendent plausibility measures and information
rected dependencies are used like general about the numbers of positive and negative
dependencies (create successors for all pos- instances covered by a node, the search heuristic
sible value combinations), and the addi- combines weak, imprecise background knowi-

tional knowledge about the direction of ein- dge we a infreaion from thowl-

fluenceedge with empirical information from the ain-

when evaluating some operationalization ing data, producing hypotheses that tend to cor-
whenevauatig sme oeraionaizaion respond to the background knowledge as much

based on a q + or q - relation, the heuristic as the datap rmtnd ovedge ack

also rates the degree to which the particular ground knowledge if the data are in conflict with

values involved match the direction of the the knowledge.

dependency (which is assumed to be lin-

ear). Knowing that q+ (A,B) and operation-
alizing condition B(.)= b, an operational-

ization B(.) = b because A(.) = a for specif- The result of this learning step is a concept hy-
ic values b and a will be regarded the more pothesis for a discrete, qualitative sub-concept
plausible the more the relative positions of in the form of a DNF expression, where each
b and a in their respective domains agree: conjunct describes one particular subtype of the
B(.) = high because A(.) = high is rated as sub-concept. The instance-based learner now
more plausible than B(.)= high because collects all the training instances covered by a
A(.) = low (see also Widmer, 1993.). Hy- particular conjunct and builds an instance store
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Fig. 1: Sketch of JBL-Smart

in the form of an interpolation table, using these 4 An Application of IBL-Smart:
examples. In the absence of knowledge about Learning Expressive Interpretation
the relevance of the numeric attributes (PN) to
the target value, the dimensions of the interpola- IBL-Smart has been applied to a complex prob-
tion table are chosen to be all the numeric attrib- lem from the domain of tonal music, namely, ex-

utes (K PN) shared by the selected instances pressive performance or interpretation of writ-

(not all instances may have defined values for all ten music. By this we understand the variations

attributes), and the output dimension is the val- in tempo and loudness that a performer applies

ue of the target variable V = T(X). (consciously or unconsciously) to the notes of a
piece during performance. When played exactly
as written, most pieces of tonal music would

When given a new instance for which to predict sound utterly mechanical and lifeless.

the value of the target variable, the system

matches the instance against all learned rules, There are basically three dimensions to expres-

retrieves those instance spaces whose associated sive performance: variations in tempo ("ruba-

rules are matched, and computes a value for the to"), in loudness ("dynamics") and in the dura-

instance's target value by interpolation in each tion of notes as actually played, as opposed to

of the retrieved spaces. If the instance matches the notated length ("articulation").

more than one rule, and thus target values are In this presentation, we will restrict ourselves to
computed in several spaces, the target values are the dimension of dynamics. As mentioned in the
simply averaged. Lacking more specific knowl- introduction, this concept is inherently numeric,
edge about the relationships between the vari- as the task is to decide not just whether or not to
ous numeric parameters, we use the Euclidean play some note louder or softer, but exactly by
distance as the similarity measure and perform how much. Nevertheless, there are two discrete,
linear interpolation. Figure 1 summarizes the qualitative sub-concepts that can naturally be
basic structure of IBL-Smart. distinguished: crescendo(Note) and diminuen-
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do(Note) - whether a note is to be played louder these predicates are computed by a pre-proces-
or softer, respectively, than some standard level, sing component which performs a music-theo-
These are the target concepts for the plausible retic analysis of the given piece in terms of some
explanation component. The precise amounts relevant musical structures (e.g., phrases and
by which the loudness is to be varied are numer- various types of 'processes' such as linear me-
ic multiplication factors that are to be learned by lodic lines (ascending or descending), rhythmic

the instance-based component. 2) patterns, etc.). Many numeric attributes then de-
scribe the relative position of a note in a phrase

Training instances are derived from actual per- or in a 'process'. Note that the number of attrib-
utes defined for a given note varies: some notes

tronic piano via a MIDI interface. At the mo- occur in many patterns, others only in some. So
ment, we are restricting ourselves to single line not all numeric attributes are defined for every
melodies (with additional information about the note.
underlying harmonic structure of the piece).
That is, the input is a sequence of notes, de- The background knowledge for this problem is
scribed in terms of various predicates and ac- mainly in the form of directed and undirected
companied by explicit information about the de- dependency statements. The domain theory is a
gree of crescendo or diminuendo that was ap- hierarchy of such dependency statements and
plied to it by the performer. Each note of a some crisp rules. The top level of the theory re-
played piece is a training instance. lates the phenomenon of loudness variations to

The description language consists of predicates some abstract musical notions by a set of depen-

that describe various features of a note and dencies like

structural features of its surroundings. There are depends on( crescendo(Note,X),
currently 41 operational predicates, of which 21 [ salience(Note,Y)]).
are symbolic (like followedbyrest(Note)) and depends-on( crescendo(Note,X),
20 are numeric (like duration(Note,X)). Some of [ goal-directedness(Note,Y)]).

depends-on( crescendo(Note,X),
[closure(Note,Y)]).

2)
A clarifying remark to readers who feel that we are The first of these can be paraphrased as

trivializing the artistic phenomenon of expressive mu-
sical performance by claiming that a computer pro- "Whether crescendo should be applied to a note
gram can easily learn to replicate such behaviour, or
that these phenomena can be explained by some simple (and if so, the exact amount X) depends, among
domain theory: We are not talking here about the high- other things, on the structural importance (sa-
ly artistic details in variation that distinguish a great pi- lience) Y of the note."
anist or other performer. We are convinced, however
(and there is much support for this hypothesis from var- and analogously for the other ones.
ious areas of musicology), that expressive performance
does have a large 'rational' component, in that one of
its purposes is to convey an understanding of musical The abstract notions salience, goal-directed-
structure to a listener. It is this rational part for which ness, and closure are then again related to low-
we can find partial plausible explanations and which er-level musical effects, all the way down to
we can expect a computer to learn, provided it is
equipped with the neccssary musical knowledge and a
suitable vocabulary, example:
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Fig. 2: Beginnings of three little minuets by JS.Bach

q + (metrical strength(Note,X), covered by a conjunct defines the dimensions of
stability(Note,Y)) and the respective interpolation table.

q + (harmonic stability(Note,X),
stability(Note,Y))

5 An Experiment
"The degree of stability Y of a note is positively

proportionally related (among other things) to Several experiments with comparatively simple
the metrical strength X of the note" etc. piano pieces have been performed. In one ex-

periment, we chose three well-known minuets
where metrical-strength is a numeric and har- from J.S.Bach's Notenb& hlein fur Anna Mag-
monic stability is a symbolic attribute (with a dalena Bach as training and test pieces. The be-
discrete, ordered domain of qualitative values). ginnings of the three minuets are shown in Fig-
Both are defined as operational. ure 2. All three pieces consist of two parts. The

Given this domain theory and some played second part of each piece was used for training:

pieces, the plausible explanation component they were played on an electronic piano by the

learns mixed symbolic/numeric rules that dis- author, and recorded through a MDI interface.
After learning, the system was tested on the firstcriminate various types of situations where a

crescendo or a diminuendo occurs. These rules parts of the same pieces. In this way, we com-
bined some variation in the training data (threeare sets (disjunctions) of conjunctive condi-

tions; each conjunct describes a particular class different pieces) with some uniformity in style

of crescendo/diminuendo situations. For each (three pieces from the same period and with
similar characteristics; test data from the sameconjunct, a numeric interpolation table (in-

stance space) is created which contains all the pieces as training data, though different).

instances covered by the conjunct. The set of all The training input consisted in 212 examples
numeric attributes shared by all the instances (notes), of which 79 were examples of crescen-
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do, and 120 were examples of diminuendo (the The reader familiar with standard music nota-
rest were played in a neutral way). The system tion may appreciate that there are strong similar-
learned 14 rules (conjuncts) and, correspond- ities in the way similar types of phrases are
ingly, 14 interpolation tables characterizing cre- played by the human teacher and the learner.
scendo situations, and 15 rules for diminuendo. (Note, for instance, the crescendo in lines rising

Quite a number of instances were covered by by stepwise motion, and the decrescendo pat-
more than one rule. For illustration, here is a ters in measures with three quarter notes).

simple rule for crescendo: Generally, the results were very good, given the

crescendo(Note,X) :- limited amount of training data and the surface
metrical strength(Note,S), differences between training and test pieces.
S > 4.0,
harmonystability(Note.high), Readers not familiar with music notation will
previous interval(Note.l1), have to take our word for it. We are planning ex-
direction(il ,up),
next interval(Note,12), periments with other, non-musical domains
direction(12,down). where the results will be more easily interpret-

"Apply some crescendo to the current note if able and testable.

the metrical strength of the note is > 4
and the underlying harmony is stable In a comparative experiment, we also tested a
and the direction of the melodyfrom system restricted to learning only in an
the previous to the current note is up instance-based way, that is, with interpolation
and the direction of the melody from the tables, but without the symbolic explanation
current note to the next is down" component. This learner used all the available

The quality of the learning results is not easy to attributes, both numeric and symbolic. The fol-
measure, as there is no precise criterion to de- lowing distance metric was used: all numerical
cide whether some performance is right or attributes were scaled between 0 and 1, and for
wrong. Judging the correctness is a matter of lis- symbolic attributes, the distance was defined to
tening. Unfortunately, we cannot attach a re- be 0 in the case of a match and 1 otherwise. As

cording to this paper so that the reader can ap- not all training instances share all numeric di-
preciate the results. Instead, Figure 3 depicts a mensions, the system learned as many inter-

part of one of the training pieces (the second part polation tables as there were combinations of
of the first minuet in G major as played by the numaric tables ascthereiwere ominins of

authr),and lsoshos th peforancecreted numeric attributes occurring in the training dataauthor), an d also show s the perform an ce created (1 fo cr s e d , 2 f rd c e c n o) Th r -
by the system for a test piece (the first part of the (18 for crescendo, 12 for decrescendo). The re-
same minuet) after learning. The figures plot the sults on the same data were considerably worse.

relative loudness with which the individual The learner did not distinguish as well between

notes were played. A level of 1.0 would be neu- different types of situations, and the results are

tral, values above 1.0 represent crescendo (in- rather blurred, as can also be seen from Figure 4,

creased loudness), values below 1.0 diminuen- which shows the same test piece as played by the
do. second system.
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6 Discussion, Related Work, and It should be remembered that this is a general

Related Matters learning model: the system presented here -

IBL-Smart - is just one particular incarnation
First, let us briefly recapitulate the main charac- of a more general approach. We have found it

teristics of the learning model: (1) The model convenient to use a best-first search algorithm
can learn precise numeric concepts via an like the Mb-Smart learner as the basis for our
instance-based method while using available plausible explanation component, as it explicit-

qualitative background knowledge through a ly constructs a search tree and allows us to inte-
symbolic learning component. (2) The symbol- grate various sources of knowledge into the
ic learning component defines and separates dif- learning process via the search heuristic (evalu-

ferent independent regions in numeric instance atioiA function). However, with appropriate
space where different regularities may apply. modifications and extensions, other symbolic
This allows the instance-based learner to build learners capable of utilizing incomplete and in-
specialized instance stores, which may yield consistent knowledge - for instance, FOCL
very specific prediction behaviour. And (3), as a (Pazzani & Kibler, 1992) - might be used just

side effect, learning rules for discrete sub-con- as well in this framework.
cepts clusters the examples around meaningful
abstractions, which may be useful for other Similarly, more elaborate strategies could be
tasks. used in the instance-based component. (Aha et

The definition of abstract sub-concepts Ti al., 1991) have described a number of instance-
based learning methods that could be applied

introduces a natural distinction between sym- bsdlann ehd htcudb ple
bitrdces and naumeraldistincond betwproueensy within a framework such as ours. Also, avail-
bolic and numeric learning, and also produces al oankoldeaotterltv e

negative instances for the symbolic learner. able domain knowledge about the relative de-

That the background knowledge is used only by gree of relevance of numeric attributes or about
the domains and typical values of numeric vari-the symbolic component seems natural, given
ables could be used to devise more sophisticated

that it is qualitative and thus may explain ab-
stract, symbolic concepts (at best), but certainly similarit metrics, tailored to the particular ap-

not precise numeric values and relationships. 3) plication.

Of course, this does not preclude the use of addi- With respect to related work, we acknowledge
tional knowledge to guide or constrain numeric the important influence on this project by some
learning in the instance-based cormponent. of the ideas expressed in (DeJong, 1989). De-

Jong had presented a system that combined a

very weak notion of plausible inference over
single cases with numeric variables. Our ap-

3) proach departs from his, among other things, in
For instance, in music, we may be able to explain why the variety of types of background knowledge

a performer applied some crescendo at a certain point
(for instance, in order to stress a musically important and in the use of a heuristically guided, search-
event), but we can never explain why she chose exactly based, multi-instance explanation algorithm
that precise degree of crescendo. A system can only re- that allows much more control over the learning
cord these precise degrees and try to replicate the same
behaviour in similar situations. What is similar is deter- process. Not only does this search introduce a
mined by the rules learned by the symbolic component. strong notion of empirical plausibility by taking
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into account the distribution of instances; the Smart (Bergadano & Giordana, 1988). We have
use of an explicit search heuristic also makes it extended the ML-Smart algorithm to also uti-
possible to exploit the qualitative knowledge lize background knowledge in the form of di-
contained in qualitative dependencies (q +, q -) rected dependency statements (which are a very
to compute the relative plausibility of argu- natural kind of knowledge in many domains).
ments. The best-first search is very likely to find With respect to the system described in (Wid-
explanations that are most plausible overall mer, 1991; 1993), which also constructs plausi-
(both with respect to the knowledge and the ble explanations of individual training instances
data). DeJong's system, on the other hand, sim- on the basis of qualitative background knowl-
ply assumed that the syntactically simplest ex- edge, we note that explaining multiple instances
planation was also the most plausible one. at a time adds a strong empirical justification to

As an additional advantage of this multi- plausible explanations. The price is non-incre-
instance explanation approach, we note also that mentality. However, it is likely that, using tech-
there is a natural way to deal with certain types niques described in (Widmer, 1989), IBL-
of noise in the training data. The evaluation Smart can be made to learn incrementally with-

function of the search algorithm incorporates out losing too much in effectiveness.
two thresholds: it accupts only nodes (con-
juncts) that cover some minimum number of Acknowledgments
positive instances, and the termination criterion I would like to thank Johannes Fiirnkranz for
allows the search .o halt when a certain percent- helpful comments on this paper. Thanks also to
a6 z. (<100 %) of Pot' '.nstances are covered, the anonymous reviewers for very precise and

.us. ^he system cai are rare instances that stimulating comments. This research is spon-
-k *ke exceptions, but are really the result of-A sored in part by the Austrian Fonds zur Ftrde-

noise. By varying these thresholds, the system rung der Wissenschaftlichen Forschung (FWF)
can be tuned to the characteristics of different under grant P8756-TEC. Financial support for
application domains, the Austrian Research Institute for Artificial In-

In fact, the musical experiments described in the telligence is provided by the Austrian Federal
previous section were characterized very Ministry for Science and Research.
strongly by noise in the data, originating from
the author's imperfect piano technique, from the References
imprecise boundaries between the abstract sub- Aha, D.W., Kibler, D., and Albert, M.K. (1991).
concepts crescendo and diminuendo, and from Instance-Based Learning Algorithms. Machine
imprecision inherent in the domain itself (there Learning 6(1), pp. 37-66.
are simply no 100% laws as to how some pas- Bergadano, F. and Giordana, A. (1988). A Knowl-
sage must and will be played; variation will in- edge Intensive Approach to Concept Induction. In
variably happen). The system concentrated on Proceedings of the Fifth International Conference

learning typical variations, on Machine Learning, Ann Arbor, MI, pp. 305-317.
Bergadano, F., Giordana, A., and Ponsero, S.

Of course (and this is also implied by the name), (1989). Deduction in Top-Down Inductive Learn-
our system also owes a lot to the work on inte- ing. In Proceedings of the Sixth International Work-
grated deductive-inductive learning in ML- shop on Machine Learning, Ithaca, N.Y., pp. 23-25.



137

Breiman, L., Friedman, J., Olshen, R. and Stone, C. Russell, S.J. (1987). Analogical and Inductive Rea-
(1984). Classification and Regression Trees. Bel- soning. Ph.D. thesis, Report STAN-CS-87-1150,
mont, CA: Wadsworth. Stanford University, Stanford, CA.

Cestnik, B., Kononenko, I., and Bratko, I. (1987). Silverstein, G. and Pazzani, M.J. (1991). Relational
ASSISTANT 86: A Knowledge Elicitation Tools for Clicles: Constraining Constructive Induction Dur-
Sophisticated Users. In I.Bratko & N.Lavrac (Eds.), ing Relational Learning. In Proceedings of the
Progress in Machine Learning. Wilmslow, U.K.: Eighth International Workshop on Machine Learn-
Sigma Press. ing, Evanston, !1M., pp. 203-207.

Collins, A. and Michalski. R.S. (1989). The Logic Tecuci, G.D. (1991). Learning as Understanding the
of Plausible Reasoning: A Core Theory. Cognitive External World. In Proceedings of the First Interna-
Science 13(1), pp. 1-49. tional Workshop on Multistrategy Learning, Harp-

DeJong, G. (1989). Explanation-Based Learning er's Ferry, W.VA, pp. 49-64.

with Plausible Inferencing. In Proceedings of the Tecuci, G.D. and Michalski, R.S. (1991). A Method
Fourth European Working Session on Learning for Multistrategy Task-adaptive Learning Based on
(EWSL-89), Montpellier, France, pp. 1-10. Plausible Justifications. In Proceedings of the

Fayyad, U. and Irani, K. (1992). On the Handling of Eighth International Workshop on Machine Learn-

Continuous-Valued Attributes in Decision Tree ing, Evanston, IMl., pp. 549-553.

Generation. Machine 'Aarning 8(1), pp. 87-102. Widmer, G. (1989). An Incremental Version of Ber-
gadano & Giordana's Integrated Learning Strategy.Forbus, K.D. (1984). Qualitative Process Theory. In Proceedings of the Fourth European Working

Artificial Intelligence 24(1-3), pp. 85-169.InPoedgsfthFurhEopaWrkgSession on Learning (EWSL-89), Montpellier,

Michalski, R.S. (1983). A Theory and Methodology France, pp. 227-238.
of Inductive Learning. In R.S.Michalski, J.G.Car- Widmer, G. (1991). Learning by Plausible Reason-
boneU, and T.M.MitcheU (Eds.), Machine Learn- id i. Appleatin to plausibl rob-ing: An Artificia1 Intelligence Approach, vol.! Palo ing and its Application to a Complex Musical Prob-
ing:An, CA:rtiiial Ilem. In Proceedings of the First International Work-
Alto, CA: Tioga. shop on Multistrategy Learning (MSL-91), Harp-
Mitchell, T.M., Keller, R.M., and Kedar-Cabelli, er's Ferry, W.VA.
S.T. (1986). Explanation-Based Generalization: A Widmer, G. (1993). Learning with a Qualitative Do-
Unifying View. Machine Learning 1(1), pp. 47-80. main Theory by Means of Plausible Explanations. In

Pazzani, M. and Kibler, D. (1992). The Utility of R.S.Michalski and G.Tecuci, eds., Machine Learn-
Knowledge in Inductive Learning. Machine Learn- ing: A Multistrategy Approach, vol. IV. Los Altos,
ing 9(1), pp. 57-94. CA: Morgan Kaufmann. (in press)



138

k-DT: A Multi-Tree Learning Method

David Heath, Simon Kasif, and Steven Salzberg
Department of Computer Science

The Johns Hopkins University
Baltimore, MD 21218

(410) 516-8296

lastname~cs.jhu.edu

Abstract Quinlan, 1987) and incremental versions of
the algorithms (Utgoff, 1989). Many of these

This paper introduces a technique refinements have been designed to produce
for using the randomized nature of better decision trees; i.e., trees that were
some learning algorithms to increase either more accurate classifiers, or smaller
their accuracy. Our method is to gen- trees, or both.
erate multiple classifiers and combine
them with a majority voting scheme.themwith purpose jof y t tis g t chnq e. iThe main goal of our research is to pro-
overcome small errors that appear in duce classifiers that provide the most accu-

individual classifiers. We have tested rate model possible for a set of data. To
our idea on a type of randomized de- achieve our goal, we have combined a stan-
cision tree with real data, and found dard method for classification - decision trees
that it consistently improves the ac- - with two other ideas. The first idea is ran-
curacy over that of average trees. We domization, which in this context allows us
have also shown that this technique to generate many different trees for the same
outperforms some other methods that task. The second idea is majority voting,
attempt to improve accuracy by using which is used, e.g., by k-nearest-neighbor
randomization in a different way. methods to decide on a classification. Here

we use a majority vote of k decision trees to

1 Introduction classify examples.

Decision trees have been used successfully for 2 Randomization in Learning
many different decision making and classifi- Algorithms
cation tasks. A number of standard tech-
niques have been developed in the machine
learning community, most notably Quinlan's In a previous work, [Heath, 1992], we in-
ID3 algorithm (1986) and Breiman et al.'s troduced the SADTlearning algorithm (de-
CART algorithm (1984). Since the intro- scribed below). In that work, we explored
duction of these algorithms, numerous vari- the generation of decision trees comprised of
ations and improvements have been put for- tests that are linear inequalities over the at-
ward, including new pruning strategies (e.g., tributes (oblique decision trees). This is a
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generalization of standard decision tree tech- 2.1 The advantage of majority
niques, in which each node of a tree is a voting
test of a single attribute. We showed that,
when generating oblique trees, finding even The premise behind this idea is that any
a single test that minimizes some goodness one tree may not capture the target concept
criteria is an NP-hard problem. We then completely accurately, but will approximate
turned to the optimization technique of sim- it with some error. This error differs from
ulated annealing to find good tests, which tree to tree. By using several trees and tak-
should generate good (i.e., small and accu- ing the majority, we hope to overcome this
rate) trees. type of error. Consider, for example, a test

Using simulated annealing in our learning al- example x with probability p(x) of being cor-
goritm sintrdultes annelemng ofrlearninm- rectly classified by a random two-category
gorithm introduces an element of random- SADTtree. If we take the majority vote of
ness. Each time our SADTprogram is run, k trees, the probability that x is correctly
it generates different trees. This led us to classified is
explore methods of using this randomization
to our advantage by generating many trees r_=) (k)

and using an additional criteria to choose the maj (k, X) E X (I p(X))k-i

best tree. Our argument was that picking j>k/2

a good tree out of the many solutions pro- In this equation, j represents the number of
duced by a randomized algorithm may be trees that correctly classify example z. We
preferable to using an algorithm, even a very require that it be more than half of the k
clever one, that only produces one solution. trees, thus the restrictions on the sum. p(x)j

represents the probability of j trees getting
In this paper, we explore another way of us- the example correct; (1 - p(x))'-j is the
ing randomization to advantage. As before, probability that the remaining trees get it
we use a single training set to generate a set wrong. , simply counts the number of pos-
of classifiers. Instead of choosing one repre- sible ways k trees could divide into two sets
sentative tree, we attempt to combine the of trees, one of size j. Figure 1 shows how
knowledge represented in each tree into a maj(k, x) varies with p(x) when different
new, more accurate, classifier, numbers of trees are used for the majority.

Note that for example x, taking the major-
Specifically, we take a set of classifiers and ity vote increases the probability of getting
combine their classifications by taking the a correct classification if p(x) > 0.5, but de-
plurality. In binary classification problems, creases it if p(x) < 0.5. Let X1 be the set of
this reduces to taking the majority. For ex- examples in the test set for which p(z) < 0.5,
ample, if we have 5 trees, and 3 classify an and X 2 be those for which p(x) > 0.5. If
example as "0," and the other two classify x E X 1, it is to our advantage to use the
it as "1," then we predict the example be- classifiers directly. If, on the other hand,
longs to class "0." When this technique is x E X2 , taking the majority will increase the
applied to decision trees, we call the result- probability that we will classify x correctly.
ing algorithm k-DT, in the spirit of k-NN, For any given test set, there will likely be
the k-nearest-neighbor algorithm, points in both cases. Obviously, we cannot

tell, given a particular example, whether it
belongs to X1 or X 2 unless we know its clas-
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sification. However, it is our experience that than nine trees, the expected accuracy goes
often the benefit we get by increasing the down, eventually converging to
likelihood of a correct classification for those
examples in X 2 outweighs the loss in accu- For a set of examples X, where p(z) is the
racy we get on the examples in Xi. probability of example x being correctly clas-

sified by an average tree, it is easy to show
Contrary to intuition, simply increasing the that the average accuracy without voting is
number of trees participating in a majority
voting scheme does not necessarily increase 1
the expected accuracy of the classifier. XExp(z)

while the accuracy when an infinite number
At first glance, it may appear that the more of tre are uein a majority compti

of trees are used in a majority computation
trees that are used, the higher will be the is
resulting accuracy. However, this is not nec- I Iz E X, p(x) > 0.5}1
essarily true. An implication of this is that 1XI
choosing the appropriate value for k may be f xia dificul prolemthat is, the fraction of the examples which
a difficult problem. are more than likely classified correctly by

We have already seen that for some examples the average tree. Between these two ex-

(those with less than 50% probability of be tremes, the overall accuracy may have dips

correctly classified by the average tree), us- and peaks.

ing a majority vote will lower the chances of In this paper, we try majority voting using
a correct classification, and the more trees
used, the lower the resulting accuracy will
be. On the other hand, increasing the num- periments to empirically choose a value for

ber of trees involved in the vote will increase k which seems to work well in practice.

the accuracy on those points likely to be clas-
sified correctly by the average tree. When 3 Related Work
we try using a majority voting scheme on a
mixture of these two types of examples, we
will get a mixed result. Consider two exam- k-DT is one of several different strategies for
ples, el and e2. If we generate many trees, combining multiple classifiers. There are two
on average el is classified correctly 45% of common approaches to this problem. The
the time, and e2 is classified correctly 80% first approach can be thought of as multi-
of the time. As shown in Figure 2, if we level learning. A set of classifier, are trained.
use a majority voting scheme, then el will Their outputs are fed to another learning
rarely be classified correctly, but e2 will al- system, which learn an appropriate weight-
most always be classified correctly. Figure 2 ing scheme on the first-level classifiers, in
also shows the combined expected accuracy the hopes of creating a more accurate classi-
for the set {el, e2}. If we generate a series fier. Depending on the implementation, the
of trees and use each one to classify the two two levels can be trained separately or simul-
examples, we expect their average accuracy taneously. Wolpert's [1992] stacked general-
to be 62.5%. If we use majority voting, we ization technique ane the hybrid technique
expect the accuracy to increase up to about developed by Zhang, et al, [1992]) are ex-
68% for nine trees. However, if we use more amples of separately trained systems. An
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example of a simultaneously trained system H(z), then we follow the the left child if
is [Jacobs, et al, 1991], in which the second H(p) >_ 0; otherwise we descend to the right
learning level learns how to assign training child.
examples to the different components of the
first level. The first step in our algorithm is to gener-

ate an initial hyperplane. The initial hyper-
k-DT takes another approach. Only the first plane we generate is always the same and is
level is trained; the second level is a simple, not tailored to the training set. We simply
easily understood, fixed network. Another wanted to choose some hyperplane that was
system that shares this property is the clus- not parallel to any of the axes, so we used the
ter back propagation network of Lincoln et hyperplane passing through the points where
al, [1990] xi = 1 and all other zj = 0, for each dimen-

sion i. In particular, the initial hyperplane
may be written in the above form as hi = 1

4 The SADT Algorithm for 1 < i < d and hd+1 = -1 since H(x) = 0
for each of these points. Thus in 3-D, we
choose the hyperplane which passes through

Although the majority voting technique (1,0,0), (0,1,0), and (0,0,1). Many other
could be applied to any randomized classi- choices for the initial hyperplane would be
fier scheme, k-DT was first conceived of as a equally good. Once the annealing begins,
natural enhancement to our SADTalgorithm. the hyperplane is immediately moved to a
Accordingly, all of our experiments have new position, so the location of the initial
been conducted on the SADTalgorithm. To split is not important.
aid in the understanding of k-DT, we explain
the workings of our SADTalgorithm here. Next, the hyperplane is repeatedly per-

turbed. If we denote the current hyper-
The basic outline of the SADTalgorithm is plane by H = {h 1,h 2 ,...,hd+i}, then the

the same as that of most other decision tree algorithm picks one of the hi's randomly
algorithms. That is, we find a hyperplane to and adds to it a uniformly chosen random
partition the training set and recurse on the variable in the range [-0.5,0.5). Using
two partitions. Here we describe the search our goodness measure (described below), we
for a good hyperplane. compute the energy of the new hyperplane

and the change in energy AE.
In our implementa-
tion, d-dimensional hyperplanes are stored If AE is negative, then the energy has de-
in the form H(x) = hd+1 + E4 I hiix, where creased and the new hyperplane becomes the
H = {h1,h 2,...,hd+ h} is the hyperplane, current split. Otherwise, the energy has in-
X = (X1, X2, ... , Xd) is a point, and hd+i rep- creased (or stayed the same) and the new

resents the constant term. For example, in hyperplane becomes the current split with

the plane the hyperplane is a line and is rep- probability e-&E/T where T is the tempera-

resented in the familiar ax + by + c = 0 form. ture of the system. The system starts out

Classification is done recursively. To classify with a high temperature that is reduced
an example, compare it to the current hy- slightly with each move. Note that when the
perplane (initially this is the root node). If change in energy is small relative to the tern-
an example p is at a non-leaf node labeled perature, the probability of accepting the
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new hyperplane is close to 1, but that as the max(min(ul, vl),min(u2,v 2 )).
temperature becomes small, the probability
of moving to a worse state approaches 0.

5 Experiments
In order to decide when to stop perturbing
the split, we keep track of the split that gen- 5
erated the lowest energy seen so far at the 5.1 Classifying irises
current node. If this minimum energy does
not change for a large number of iterations For our first experiment, we ran k-DT on
(we used numbers between 3000 and 100,000 a real dataset that has been the subject of
iterations in our experiments), then we stop other machine learning studies. Fisher's iris
making perturbations and use the split that data is a well known dataset (see Fisher
generated the lowest energy. The recursive [1936]), and many common learning tech-
splitting continues until each node is pure; niques have been applied to it. Weiss and
i.e., each leaf node contains only points of Kapouleas [19891 compared several learning
one category. algorithms on the iris data set, as well as

some others. The data consists of 150 exam-
ples, 50 each of three different types of irises:

4.1 Goodness Criteria setosa, versacolor, and virginica. Each ex-
ample is described by numeric measurements

SADTcan work with any goodness criterion, of width and length of the petals and sepals.
and we have experimented with several cri-
teria. For detailed discussions of these mea- We performed thirty-five 10-fold cross vali-
sures, see Heath [1992]. In this paper, we ex- dation trials using SADT. In an x-fold cross-
periment with three of these criteria: Quin- validation trial, we divide the dataset into x
lan's [1986] Information Gain, and our own approximately equal sized subsets and per-
Max Minority and Sum Minority. We define form x experiments. For each set a, we train
max minority and sum minority as follows, the learning system on the union of the re-

maining x - 1 sets and test on set s. The
Consider a set of examples X, belonging results are averaged over these x runs.
to 2 classes, u and v. A hyperplane di-
vides the set into two subsets X7 and X2. SADTcan use many different goodness crite-
For each subset, we find the class that ap- ria to guide its search for good trees. We
pears least often. We say that these are used three different criteria: our own max
the minority categories. If X1 has few ex- minority and sum minority and Quinlan's
amples in its minority category C1, then it [1986] information gain. Averaged results
is relatively pure. We prefer splits that are are shown in Table 1.
pure; i.e., splits that generate small minori-
ties. Let the number of examples in class u Also shown in the table is the accuracy ob-
(class v) in X, be ul (vi) and the number tained when, for each training- and test-set
of examples in class u (class v) in XK be u2  pair, we take the majority vote of 11 trees
(v2). To force SADTto generate a relatively when classifying the test set. Note that the
pure split, we define the sum-minority er- accuracy, when using the majority voting
ror measure to be min(u1, vi) + min(u 2, v2 ), scheme, is consistently higher than when us-
and the max-minority error measure to be ing single SADTtrees.
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Average Error rate Reduction Best Accuracy
Goodness Error with in Error Number
Criterion Rate l i1 trees Error Rate of Trees

MM 5.7 4.1 28W _ 4.1 9_

SM 5.3 3.7 30% 3.3 33
IG 5.5 4.8 13% 4.8 5

Table 1: Iris results

Weiss and Kapouleas [1989] obtained accura- had that many trees to work with). The
cies of 96.7%, 96.0%, and 95.3% with back- choice of 11 trees worked well for the iris
propagation, nearest neighbor, and CART, dataset. The accuracy obtained with this
respectively. Their results were generated number of trees was at least as good as any
with leave-one-out trials, i.e., 150-fold cross other number of trees we tried for two of the
validation. energy measures and still quite good for the

third.

5.1.1 Choosing a value for k At this point, it is worth considering whether

these results are to be expected. For each

How did we choose k = 11 for our k-DT example x in the iris data set, we computed

trees? Intuitively, it may seem that the more the percentage p(x) of times it was correctly

trees used in the voting process, the higher classified in our tests. Figure 4 shows, for

will be the combined accuracy. However, if a given percentage p, the fraction of the ex-

an example is somehow "difficult" to classify, amples for which p(x) = p. (Note that the

then voting will only make it less likely to figure is an average over all three goodness

classify that example correctly. criteria). This gives us a rough estimate on
the probability of the average tree classify-

Figure 3 is a plot of average classification ac- ing that example correctly. First, note that a

curacy on the iris data set, as the number of vast majority of the examples are always or

trees in the voting process is varied. Note nearly always classified correctly. Approxi-

that there is a big jump in accuracy even mately, 4.4% of the examples are predicted

when only three trees are used. The max mi- correctly less than half of the time. These

nority and information gain measures peak are the examples that we would expect to

fairly early and begin to drop off, whereas be classified incorrectly if we were to take a

the sum minority measure is still increasing majority vote over a large number of trees.

in accuracy at thirty-five trees. We note that this percentage is close to error
rate obtained with k-DT.

We have compromised by using eleven trees,
which appears to work well in practice. Ta-
ble 1 shows the average classification accu- 5ingto n
racy when using eleven trees for voting. Also diagnosis
shown is the classification accuracy for the
optimal choice of k. (The optimal choice in For our second experiment, we chose a
the table is limited by the number of cross- dataset that has been the subject of ex-
validation trials we have run, since we only periments that classified the data using
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oblique hyperplanes (Mangasarian et al., average of thirty-six 10-fold cross-validation
1990). This dataset contains 470 examples trials. Once again, the accuracy obtained by
of patients with breast cancer, and the di- using an 11-tree majority classifier is consis-
agnostic task is to determine whether the tently higher than that of the average tree.
cancer is benign or malignant. The input In this example, the sum minority goodness
data comprised 9 numeric attributes, hence criterion did quite a bit better on average
our decision trees used oblique hyperplanes than the other two, but it benefited less from
in 9-D. the use of the majority technique. It is pos-

sible that by taking the majority, we are able
Mangasarian's method uses linear program- to overcome weaknesses in the other two cri-
ming to find pairs of hyperplanes that par- teria that are not as significant with sum mi-
tition the data. The algorithm finds one nority.
pair of parallel hyperplanes at a time, and
each pair can be oriented at any angle with We also see that using eleven trees is a good
respect to all other pairs. The resulting choice for this dataset as well. Only for the
model is a set of oblique hyperplanes, similar max minority energy measure was there a
though not identical to an oblique decision noticeable difference in accuracy between the
tree. optimal choice for the number of trees and

our choice of 11.
Because Mangasarian et al. received the data
as they were collected in a clinical setting,
their experimental design was very simple. 5.3 Identifying stars and galaxies
They trained their algorithm on the initial
set of 369 examples. Of the 369 patients, In order to study the performance of k-
201 (54.5%) had no malignancy and the re- DT on larger datasets, we ran several ex-
mainder had confirmed malignancies. On periments using astronomical image data
the next 70 patients to enter the clinic, they collected with the University of Minnesota
used their algorithm for diagnosis, and found Plate Scanner. This dataset contains several
that it correctly diagnosed 68 patients. We thousand astronomical objects, all of which
used 68/70 = 0.97 as a rough estimate of are classified as either stars or galaxies. Ode-
the accuracy of Mangasarian et al.'s method. wahn et al. [1992] used this dataset to train
They then re-trained their algorithm using perceptrons and backpropagation networks
the 70 new patients, and reported that it to differentiate between stars and galaxies.
correctly classified all of the next 31 patients
to enter the clinic. Mangasarian reported We did not have access to the exact training
that his program's output was being used in and test set partitions used by Odewahn et
an actual clinical setting. Using the same al., so we used a cross-validation technique
dataset with a more uniform experimental to estimate classification accuracy. The Ode-
design, Salzberg reported that the EACH wahn et al. study used a single training/test
hyper-rectangle program produced 95% clas- set partition. Although our results may not
sification accuracy, and 1-nearest-neighbor be completely comparable to theirs, we in-
had 94% accuracy (Salzberg, 1991). clude them to show that both learning meth-

ods produce similar accuracies. Our results
The results of our tests on this data are were generated by averaging nineteen 10-
shown in Table 2. The average values are the fold cross-validation trials.
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Average Error rate Reduction Best Accuracy
Goodness Error with in Error Number
Criterion Rate (1) 11 trees Error Rate of Trees

MM 7.3 4.8 34% 4.4 33
SM 5.1 4.4 13% 4.3 23
IG 6.7 4.9 27% 4.9 11

Table 2: Breast cancer malignancy results

Average Error rate Reduction Best Accuracy
Goodness Error with in Error Number
Criterion Rate (1) 11 trees Error Rate of Trees

MM 1.2 0.5 58% 0.5 11
SM 1.0 0.7 30% 0.7 7
IG 1.0 0.6 40% 0.6 5

Table 3: Star/galaxy results

The astronomy dataset consists of 4164 ex- 5.4 Comparison with other methods
amples. Each example has fourteen real-
valued attributes and a label of either "star" In [Heath, 19921, we explored several tech-
or "galaxy." Approximately 35% of the ex- niques of taking advantage of randomization
amples are galaxies. in learning algorithms. Our focus in that

work was on techniques that generate many
Classification results are shown in Table 3. trees, and use some additional criteria to se-
Odewahn et al. [19921 obtained accuracies lect the best tree, which we then measure on

of 99.7% using backpropagation and 99.4% the testing set. In this section, we compare

with a perceptron. It appears, however, those techniques to the majority classifica-

that their results were generated with a sin- tion technique.

gle trial on a single partition into test- and

training-set. In fact, we obtained a ten-fold One of our criteria for choosing the "best"
cross-validated accuracy of 99.1 using a per- tree was to choose the smallest trees. The in-
ceptron. tuition behind this technique is that smaller

trees may be more concise descriptions of the
Using a majority classifier increased classi- problem domain, less sensitive to noise in the
fication accuracy for this dataset, as in the training data, and have a lower chance of be-
other studies. For the max minority good- ing generated through overtraining. For each
ness criterion, we were able to reduce the of the ten pairs of training and testing sets in
error rate by almost 60%. Using eleven trees a 10-fold cross-validation, we generated sev-
for the majority classification was a good eral SADTtrees, and then chose the smallest.
choice for this dataset. The results for eleven We then averaged the accuracy and size of
trees were at least as good as for any other the ten chosen trees. If, for given training
number of trees (up to 15, the number of and testing sets, there was more than one
cross-validation trials we ran). smallest tree, we averaged them, before av-

eraging them with the other nine.
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In another experiment in [Heath, 1992] we we have considered for increasing accuracy
split the training set 70/30 and trained only through randomization.
using 70% of the training set. The other 30%
was used as a second test set. We used it to This work is preliminary; we have not tried
test the tree and assign it a figure of merit, to apply the majority technique to other
We ran this several times, choosing different types of randomized learning algorithms.
70/30 splits each time and choosing the trees However, this is a clear opportunity for fu-
with the highest figures of merit. We then ture experiments. We would also like to ex-
tested those trees on the real test set. plore combining this technique with other

techniques. For example, we would like to
In Table 4, we compare k-DT with these try the majority technique on trees which are
two approaches. All three techniques gave smaller than average, to see if we can get any
some improvement in accuracy, although the further improvements in accuracy. It is pos-
method of choosing trees by size was not very sible that for some applications, the added
consistent. In some cases, small trees were complexity of a majority classifier can be a
actually worse than average trees. k-DTs disadvantage. We are exploring ways that
always performed better than using a sepa- might allow us to combine several trees in
rate test set to judge trees. It nearly always a majority-like way, yet still end up with a
performed better than picking the smallest small tree structure.
trees. The only exception to this was for
two goodness criteria used on the iris data Acknowledgements
set. The disadvantage to k-DTs, of course,
is that they are not trees, but rather collec-
tions of trees. Thus the representation cre- The authors wish to thank David Aha for
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Error Rate
Goodness Smallest Y?,nd

Dataset Criterion Average k-DT Trees Test Set
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Malignancy SM 5.1 4.4 4.9 5.2

IG 6.7 4.9 6.8 6.8
Star/ MM 1.2 0.5 0.8 0.8

Galaxy SM 1.0 0.7 0.9 0.5
I IG 1.0 0.6 0.9 0.7

Table 4: Majority classifier and other methods

tures of local experts. Neural Computa- Methodologies for Intelligent Systems:
tion., 3:79-87, 199i. 6th International Symposium, ISMIS '91,

pages 399-408, New York, 1991. Springer-[Lincoln and Skrzypek, 19901 W. Lincoln Verlag.

and J. Skrzypek. Synergy of clustering

multiple back propagation networks. In [Utgoff, 1989] P. Utgoff. Incremental induc-
David S. Touretzky, editor, Advances in tion of decision trees. Machine Learning,
Neural Information Processing Systems 2, 4(2):161-186, 1989.
pages 650-657. Morgan Kaufmann, 1990. [Wiess and Kapouleas, 19891 S. Wiess and

[Mangasarian et al., 1990] 0. Mangasarian, I. Kapouleas. An empirical comparison of
R. Setiono, and W. Wolberg. Pattern pattern recognition, neural nets, and ma-
recognition via linear programming: The- chine learning classification methods. In
ory aid application to medical diagnosis. Proceedings of the Eleventh IJCAI, De-
SIAM Workshop on Optimization, 1990. troit, MI, 1989. Morgan Kaufmann.

LOdewahn et al., 1992) [Wolpert, 1992] D. Wolpert. Stacked gen-
S. C. Odewahn, E. B. Stockwell, R. L. eralization. Neural Networks, 5:241-259,
Pennington, R. M. Humphreys, and W. A. 1992.
Zumach. Automated star/galaxy discrim-
ination with neural networks. Astronomi- [Zhang et al., 19921 X. Zhang, J. Mesirov,
cal Journal, 103(1):318-331, 1992. and D. Waltz. Hybrid system for protein

secondary structure prediction. Journal of[Quinlan, 19861 J.R. Quinlan. Induction of Molecular Biology, 225:1049-1063, 1992.

decision trees. Machine Learning, 1(1):81-

106, 1986.

[Quinlan, 1987] J.R. Quinlan. Simplifying
decisoin trees. International Journal of
Man-Machine Studies, 27:221-234, 1987.

[Salzberg, 1991] S. Salzberg. Distance met-
rics for instance-based learning. In



150

Meta-Learning for Multistrategy and Parallel Learning

Philip K. Chan and Salvatore J. Stolfo
Department of Computer Science

Columbia University
New York, NY 10027

pkc@cs.columbia.edu and sal@cs.columbia.edu

Abstract algorithms have different representations and
search heuristics, different search spaces are be-

Meta-learning is proposed as a general tech- ing explored and hence potentially diverse re-
nique to combine a number of separate clas- sults can be obtained from different algorithms.
sifiers for machine learning tasks. A number Mitchell (1980) refers to this phenomenon as
of possible approaches for meta-learning are inductive bias. That is, the outcome of running
proposed including the use of a single learn- an algorithm is biased in a certain direction.
ing algorithm as well as a number of different Furthermore, different data sets have different
learning algorithms. This paper describes meta- characteristics and the performance of different
learning strategies for combining independently algorithms on these data sets might differ. In
learned classifiers by different algorithms to im- other words, to date there is no single algorithm
prove overall accuracy. We also present several that works best on all kinds of data sets. Hence,
meta-learning strategies for combining learned it is beneficial to build a framework that allows
classifiers by a number of parallel learning pro- different learning algorithms to be used in di-
cesses on subsets of training data using different verse situations.
algorithms. The strategies are independent of
the learning algorithms used. Recently, many researchers have proposed im-

plementing learning systems by integrating in
Key words: concept learning, meta-learning, some fashion a number of different strategies
and parallel and distributed processing. and algorithms to boost overall accuracy. The

basic notion behind this integration is to com-
plement the different underlying learning strate-

1 Introduction gies embodied by different learning algorithms
by effectively reducing the space of incorrect

Most research in concept learning (or learning classifications of a learned concept. There are
from examples) focuses on the conception and many ways of integrating different learning al-
evaluation of distinct learning strategies embod- gorithms. For example, work on integrating
ied by an individual algorithm. Since different concept and explanation-based learning (Flann
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& Dietterich, 1989; Towell et al., 1990) requires are perhaps the best examples.
a complicated new algorithm that implements
both approaches to learning in a single system. Quinlan (1979) approached the problem of ef-
Another line of work focuses on combining dif- ficiently applying learning systems to data that
ferent learning systems in a loose fashion. For are substantially larger than available memory
example, Silver et al.'s (1990) work on using a with a windowing technique. A learning algo-
coordinator to gather votes from three different rithm is applied to a small subset of training
learners and Holder's (1991) work on selecting data, called a window, and the learned concept
learning strategies based on their relative utility, is tested on the remaining training data. This
One advantage of this approach is its simplic- is repeated on a new window of the same size
ity in treating the individual learning systems with some of the incorrectly classified data re-
as black boxes with little or no modification re- placing some of the data in the old window un-
quired to achieve a final system. Therefore, in- til all the data are correctly classified. Wirth
dividual systems can be added or replaced with and Catlett (1988) show that the windowing
relative ease. technique does not significantly improve speed

on reliable data. On the contrary, for noisy
A more interesting approach to loosely com- data, windowing considerably slows down the
bine learners is to learn how to combine in- computation. Catlett (1991) demonstrates that
dependently learned concepts. Stolfo et al.'s larger amounts of data improves accuracy, but
work (1989) attempts to learn rules for merging he projects that ID3 (Quinlan, 1986) on modem
different phoneme output representations from machines will take several months to learn from
multiple trained speech recognizers. Wolpert a million records in the flight data set obtained
(1992) presents a theory on stacked generaliza- from NASA. He proposes some improvements
tion (meta-learning). Several (level 0) classi- to the ID3 algorithm, but his scheme is limited
fiers are first learned from the same training set. to real-numbered attributes and the complex-
The predictions made by these classifiers on the ity is still prohibitive for large amounts of data
training set and the correct classifications form (Chan & Stolfo, 1993c). Typical learning sys-
the training set of the next level (level 1) clas- tems like ID3 cannot handle data that exceed
sifier. When an instance is being classified, the the size of a monolithic memory on a single
level 0 classifiers first make their predictions on processor. We believe parallel and distributed
the instance. The predictions are then presented processing with divide-and-conquer techniques
to the level 1 classifier, which makes the final provides the best hope of dealing with such large
prediction. Zhang et al.'s (1992) work utilizes amounts of data in terms of speed and memory
a similar approach to learn a combiner based on requirement. But how precisely does one orga-
the predictions made by three different classi- nize and implement a parallel processing system
fiers. for machine learning tasks?

Furthermore, much of the research in concept One approach to this problem is to parallelize
learning concentrates on problems with rela- the learning algorithms. Zhang et al.'s (1989)
tively small amounts of data. With the com- work on parallelizing the backpropagation algo-
ing age of "high-capacity" and "light-speed" rithm on a Connection Machine is one example.
networks, it is likely that orders of magnitude This approach requires optimizing the code of a
more data will be available for various learn- particular algorithm for a specific architecture.
ing problems of real world importance. The Our approach is to run the serial code on a num-
Grand Challenges of HPCC (Wah et al., 1993) ber of data subsets in parallel and combine the
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results in an intelligent fashion. This approach put of concept learning systems. In this case
has the advantage of using the same serial code meta-learning means learning from the classi-
without the time-consuming process of paral- fiers produced by the learners and the predic-
lelizing it. In addition, our proposed framework tions of these classifiers on training data. A
for combining the results of learned concepts classifier (or concept) is the output of a concept
is independent of the learning algorithms and learning system and a prediction (or classifica-
the computing platform used. However, this tion) is the predicted class generated by a clas-
approach cannot guarantee the accuracy of the sifier when an instance is supplied. That is, we
learned concepts to be the same as the serial ver- are interested in the output of the learners, not
sion since a considerable amount of information the learners themselves. Moreover, the training
may not be accessible to each of the learners, data presented to the learners initially are also

available to the meta-learner if warranted.
In this paper we present the concept of meta-
learning, introduced in (Chan & Stolfo, 1993c), In essence we use multiple strategies to improve
and its use in coalescing the results from mul- accuracy and parallelism to improve speed.
tiple concept learning systems to improve ac- The use of meta-learning can facilitate reach-
curacy and the results achieved from a set of ing these goals. This is demonstrated by four
parallel or distributed learning processes to im- frameworks supported by meta-learning as fol-
prove learning speed. The ultimate goal of this lows:
work is to improve both the accuracy and ef-
ficiency of machine learning by means of par- 1. Hypothesis boosting (HB) involves the im-
allel processing of multiple learning systems provement of accuracy of a learning algo-
applied to massive amounts of training data. rithm by meta-learning. A number of in-
There are many ways one might imagine to stances of a single learning algorithm are
combine learned classifiers. For this paper, applied to distinguished subsets of train-
we detail only a few approaches. Thus, this ing data that are composed in such a way
work may be viewed as exploratory to deter- as to improve the overall prediction accu-
mine the efficacy of the general approach. Sec- racy (Schapire (1990) calls this hypothe-
tion 2 discusses meta-learning and how it facil- sis boosting). Based on an initial learned
itates multistrategy and parallel learning. Sec- hypothesis for some concept derived from
tion 3 details our strategies for boosting accu- a random distribution of training data,
racy by meta-learning, which appear in (Chan Schapire (1990) generates two additional
& Stolfo, 1993a). Section 4 discusses our ap- distributions of examples, to which the
proach to improve speed and accuracy through learning algorithm is then applied. The
meta-learning. Section 5 concludes with our three different distributions are interrelated
findings and work in progress. and generated successively. The predic-

tions of the three learned classifiers are
2 Meta-learning combined using a simple arbitration rule.

Although his approach is limited to the
Meta-learning can be loosely defined as learn- PAC model of learning, some success was
ing from information generated by a learner(s). achieved in the domain of character recog-
It can also be viewed as the learning of meta- nition, using neural networks (Drucker et
knowledge on the learned information. In our al. 1993). Freund (1990) has a similar
work we concentrate on learning from the out- approach, but with potentially many more

distributions. This framework focuses pri-
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marily on improving the accuracy of an 3 Multistrategy Hypothesis
individual learner. Boosting

2. Parallel learning (PL) involves applying The objective here is to improve prediction
a single algorithm on different subsets of accuracy by exploring the diversity of multi-
the data in parallel and the use of meta- pie learning algorithms through meta-learning.
learning to combine the partial results. Un- This is achieved by a basic configuration which
like hypothesis boosting, the subsets are has several different base learners and one
independent and can be generated concur- meta-learner that learns from the output of the
rently. This approach attempts to improve base leaners. The meta-learner may employ the
speed, not accuracy, via parallelism. Not same algorithm as one of the base learners or a
much work by others has been done in ap- completely distinct algorithm. Each of the base
plying meta-learning to parallel learning. learners is provided with the entire training set

of raw data. However, the training set for the
meta-learner varies according to the strategies

3. Multistrategy hypothesis boosting (MSHB) described below, and is quite different than the
involves applying multiple algorithms on data used in training the base classifiers. Note
the same set of data and the results of that the meta-learner does not aim at picking the
the learned concepts are combined by "best" classifier generated by the base learners;
meta-learning to improve overall accuracy. instead it tries to combine the classifiers. That
The aforementioned approaches used by is, the prediction accuracy of the overall system
Wolpert (1992) and Zhang et al. (1992) are is not limited to the most accurate base learner.
examples of this strategy. This approach It is our intent to generate an overall system that
attempts to take advantage of the diversity outperforms the underlying base learners.
of learners to increase accuracy.

There are in general two types of information
4. Multistrategy parallel learning (MSPL) is the meta-learner can combine: the learned base

a combination of parallel learning and classifiers and the predictions of the learned
multistrategy hypothesis boosting. Multi- base classifiers. The first type of information
pie learning algorithms are applied to sub- consists of concept descriptions in the base
sets of the data in parallel. This framework classifiers (or concepts). Some common con-
tries to improve both speed via parallelism cept descriptions are represented in the form
and accuracy via diversity. To our knowl- of decision trees, rules, and networks. Since
edge, not much research by others has been we are aiming at diversity in the base learn-
attempted in this framework, other than the ers, the learning algorithms chosen usually have
proposed work in (Stolfo et al., 1989). different representations for their learned classi-

fiers. Hence, in order to combine the classifiers,
we need to define a common representation to

Our work has concentrated on parallel learning which the different learned classifiers are trans-
and multistrategy hypothesis boosting, which, lated. However, it is difficult to define such a
we believe, will provide some insights in how representation to encapsulate all the represen-
to achieve multistrategy parallel learning. In tations without losing a significant amount of
the rest of this paper we will discuss our ap- information during the translation process. For
proach to the multistrategy hypothesis boosting instance, it is very difficult to define a com-
and multistrategy parallel learning frameworks.
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mon representation to integrate the discrimi- learner generates a meta-classifier, that we call
nant functions and exemplars computed by a a combiner. In classifying an instance, the base
nearest-neighbor learning algorithm with the classifiers first generate their predictions. Based
tree computed by a decision tree learning al- on the same composition rule, a new instance
gorithm. Because of this difficulty, one might is generated from the predictions, which is then
define a uniform representation that limits the classified by the combiner. The aim of this strat-
types of representation that can be supported egy is to coalesce the predictions from the base
and hence the choice of learning algorithms. classifiers by learning the relationship between

these predictions and the correct prediction.
An alternative strategy is to integrate the predic-
tions of the learned classifiers for the training set We experimented with three schemes for the
leaving the internal organization of each classi- composition rule. First, three predictions,
fier completely transparent. These predictions Ci(r), C2(x), and C3(x), for each example x
are hypothesized classes present in the training in the original training set of examples, E, are
data and can be categorical or associated with generated by three separate classifiers, C1, C2,
some numeric measure (e.g., probabilities, con- and (C3. These predicted classifications are used
fidence values, and distances). In this case, the to form a new set of "meta-level training in-
problem of finding a common ground is much stances," T, which is used as input to a learning
less severe. For instance, classes with numeric algorithm that computes a combiner. The man-
measures can be treated as categorical (by pick- ner in which T is computed varies according to
ing the class with the highest value). Since any the schemes as defined below. In the following
learner can be employed in this case, we focus definitions, class(x) denotes the correct classi-
our work on combining predictions from the fication of example _r as specified in training set
learned classifiers. Moreover, since convert- E.
ing categorical predictions to ones with numeric
measures is undesirable or impossible, we con- 1. Return meta-level training instances with
centrate on combining categorical predictions. the correct classification and the predic-tions; i.e., T = {(class(x),C1 (x),C 2 (x),

We experimented with three types of meta- C3(x)) I xE E}. This scheme was also
learning strategies (combiner, arbiter, and hy- used by Wolpert (1992). (For further ref-
brid) for combining predictions, which we dis- erence, this scheme is denoted as meta-
cuss in the following sections. For pedagogi- class.) A sample training set is depicted in
cal reasons, our discussion assumes three base Figure 1.
learners and one meta-learner. 2. Return meta-level training instances sim-

ilar to those in the first (meta-class)
3.1 Combiner strategy scheme with the addition of the original

attribute vectors in the training examples;
In the combiner strategy, the predictions for the i.e., T = {(cla.s(x), Cj(x), C2(x), C13(x),
training set generated by a two-fold cross val- attrvec(x)) I x E E}. (Henceforth,
idation technique using the base learners form this scheme is denoted as meta-class-
the basis of the meta-learner's training set (de- attribute.)
tails in (Chan & Stolfo, 1993a)). A composition
rule, which varies in different schemes, deter- 3. Return meta-level training instances sim-
mines the content of training examples for the ilar to those in the meta-class scheme
meta-learner. From these examples, the meta- except that each prediction, Ci(x), has
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rf binary predictions, Ci, (x),. ., C,(x), meta-classifier, in this case called an arbiter. In
where rn is the number of classes. Each classifying an instance, the base classifiers first
prediction, C(N, (x), is produced from a bi- generate their predictions. These predictions,
nary classifier, which is trained on exam- together with the arbiter and a corresponding
pies that are labeled with classes j and arbitration rule, generate the final predictions.
-•j. In other words, we are using more (This contrasts with the multi-level arbiter trees
specialized base classifiers and attempt- discussed in Section 4.1.) In this strategy one
ing to learn the correlation between the learns to arbitrate among the potentially dif-
binary predictions and the correct predic- ferent predictions from the base classifiers, in-
tion. For concreteness, T = {(class(x), stead of learning to coalesce the predictions as
Cl((x),.. .,C (x), C2,(x),..., C2,(x), in the combiner strategy. We first describe the
C;3,(x),. (x)) I x E E}. (Hence- schemesfortheselectionruleandthenthosefor
forth, this scheme is denoted as meta-class- the arbitration rule.
binary.)

We experimented with two schemes for the se-
These three schemes for the composition rule lection rule, which chooses training examples
are defined in the context of forming a train- for an arbiter. In essence the schemes select ex-
ing set for the combiner. These composition amples that are confusing to the three base clas-
rules are also used in a similar manner during sifiers, from which an arbiter is learned. Based
classification after a combiner has been com- on three predictions, Ci(x), C2(x), and C3 (x),
puted. Given a test instance whose classifica- for each example x in a set of training exam-
tion is sought, we first compute the classifica- ples, E, each scheme generates a set of training
tions predicted by each of the base classifiers, examples, T (C E), for the arbiter. The two
The composition rule is then applied to generate versions of this selection rule implemented and
a single meta-level test instance, which is then reported here include:
classified by the combiner to produce the final 1. Return instances with predictions that dis-
predicted class of the original test instance. agree; i.e., T = Td = {x E E I (CI (z)#

3.2 Arbiter strategy C2(x)) V (C2(x) # C3(x))}. Thus, in-
stances with conflicting predictions are
used to train the arbiter. However, in-

In the arbiter strategy, the training set for the ses with pre ition Hagee bta
metaleaner s asubst o th tranin setforthestances with predictions that agree but are

meta-learner is a subset of the training set for the incorrect are not included. (We refer to
base learners. That is, the meta-level training this scheme as meta-different.) A sample

instances are a particular distribution of the raw

training set E. The predictions of the learned training set is depicted in Figure 1.

base classifiers for the training set and a selec- 2. Return instances with predictions that dis-
tion rule, which varies in different schemes, de- agree, Td, as in the first case (meta-
termines which subset will constitute the meta- different), but also instances with predic-
learner's training set. (This contrasts with the tions that agree but are incorrect; i.e, T =
combiner strategy which has the same number Td U Ti, where Ti = {x E E I (CI(x) =
of examples for the base classifier as for the C2 (x) = C3(x)) A (class(x) 0 CI(x))I.
combiner. Also, the meta-level instances of the Note that we compose both cases of in-
combiner strategy incorporate additional infor- stances that are incorrectly classified or are
mation than just the raw training data.) Based in disagreement. (Henceforth, we refer to
on this training set, the meta-learner generates a this case as meta-different-incorrect.)
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Class Attribute vector Example Base classifiers' predictions
class(x) attrvec(z) z C, (z) I C2(z) C,(x)

a attrvecl j a a a
b attrveq2z b c

c attrvecz if aj b a

Training set from 1raining set from
-the meta-class combiner scheme the meta-different arbiter scheme

Instance Class Attribute vectorII (aa~a)Instance IClass Attribute vectorI a (a, a, a) I attrvec2
2 b (a, b, c) 2 attrvec3
3 c (c, b, a)

Figure 1: Sample training sets generated by the combiner and arbiter strategies

The arbiters are trained by some learning al- correcting the predictions of the "confused" ex-
gorithm on the particular distinguished distri- amples. It does so by using the combiner strat-
butions of training data and are used in gener- egy to coalesce the predicted classifications of
ating predictions. During the classification of instances in disagreement by the base classi-
an instance, y, the learned arbiter, A, and the fiers, instead of purely arbitrating among them.
corresponding arbitration rule, produce a final A learning algorithm then generates a meta-
prediction based on the three predictions, C1 (y), classifier from this training set. When a test
C2 (y), and C3 (y), from the three base classifiers instance is classified, the base classifiers first
and the arbiter's own prediction, A(y). The fol- generate their predictions. These predictions
lowing arbitration rule applies to both schemes are then composed to form a meta-level instance
for the selection rule described above, for the learned meta-classifier using the same

composition rule. The meta-classifier then pro-
1 &2. Return the simple vote of the base and ar- duces the final prediction.

biter's predictions, breaking ties in favor
of the arbiter's prediction; i.e., if there are We experimented with two combinations of
no ties, return vote(Ci(y), C2(y), C3(y), composition and selection rules, though any
A(y)), otherwise return A(y). combination of the rules is possible:

33 H1. Select examples that have different predic-
3.3Hybrid straty tions from the base classifiers and the pre-

dictions, together with the correct classesWe integrate the combiner and arbiter strategies and attribute vectors from the training

in the hybrid strategy. Given the predictions of s ett-rser. thising

the base classifiers on the original training set, the meta-different and meta-class-attribute

a selection rule picks examples from the train- schemes. (Henceforth, we refer to this

ing set as in the arbiter strategy. However, the scheme as meta-dnfferent-class-awribute.)

training set for the meta-learner is generated by

a composition rule applied to the distribution 2. Select examples that have different or in-
of training data (a subset of E) as defined in correct predictions from the base classi-
the combiner strategy. Thus, the hybrid strat- fiers and the predictions, together with the
egy attempts to improve the arbiter strategy by correct classes and attribute vectors form
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the training set for the meta-learner. This ical one.
integrates the meta-different-incorrect and
meta-class-attribute schemes. (Hence- 3.4 Summary of empirical results
forth, denoted as meta-different-incorrect-
class-attribute.) Experiments on the aforementioned strategies

were run with different combinations of three
We discussed three general meta-learning base-learners and one meta-learner. In the ex-
strategies (combiner, arbiter, and hybrid) for periments we employed four different learning
multistrategy hypothesis boosting. The com- algorithms: BAYES (described in (Clark &
biner strategy aims at coalescing predictions Niblett, 1987)), ID3 (Quinlan, 1986), CART
from the constituent classifiers, whereas the ar- (Breiman et al., 1984, and WPEBLS (the
biter strategy arbitrates among them. In addi- weighted version of PEBLS (Cost & Salzberg,
tion, the training set for the combiner strategy 1993)), and two molecular biology data sets:
includes examples derived from the entire orig- protein secondary structures (SS) (Qian & Se-
inal training set, whereas the one for the arbiter jnowski, 1988) and DNA splice junctions (SJ)
includes only examples chosen by a selection (Towell etal., 1990). Details of the experiments
rule from the original set. That is, the train- and quantitative results obtained are reported in
ing set for the arbiter strategy is usually smaller (Chan & Stolfo, 1993a). Space limitations pre-
than the one for the combiner strategy and hence vent us from displaying them here. We summa-
contains less information. The hybrid strategy rize our results as follows.
is intended to augment this deficiency in the
arbiter strategy by coalescing the predictions There are two ways to analyze the results. First,
from the selected examples. We postulate that we consider whether the employment of a meta-
the combiner strategy would still be the most learner improves accuracy with respect to the
effective one due to the larger amount of infor- underlying three base classifiers. For both sets
mation available and the coalescing process. of data, we discovered improvements were al-

ways achieved when BAYES was used as the
Among the combiner schemes, the meta-class- meta-leamer and the other three learning algo-
attribute scheme provides more information rithms (ID3, CART, and WPEBLS) served as
(the addition of attribute vectors) than the meta- the base-learners (improved from 55.4% up to
class scheme in the combiner training set. 60.7% in SS and from 94.8% up to 96.6% in
The meta-class-binary scheme provides more SJ), regardless of the meta-learning strategies
precise information for the meta-learner be- employed. Next, when we considered combi-
cause more specialized base classifiers are used. nations of a particular meta-learner and strat-
Among the arbiter schemes, the meta-different- egy, regardless of the base learners, the re-
incorrect scheme includes more examples in suits were mixed. For the SJ data set, the
the arbiter training set than the meta-different same or better accuracy was consistently at-
scheme. Similar observations can be made for tained when BAYES was the meta-learner in the
corresponding schemes in the hybrid strategy. meta-class-attribute strategy (improved from

94.8% up to 97.2%) and ID3 in the meta-class
The choice of the meta-learner to perform the and meta-class-attribute strategies (improved
above strategies is another issue. Due to the from 94.8% up to 96.9%), regardless of the
relatively low regularity in the training data for base learners. For the SS data set, none of the
meta-learners, we postulate that a probabilistic meta-learner/strategy combinations maintained
learner would be more effective than a categor- a consistent improvement.
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Second, we consider whether the use of meta- 4 Multistrategy Parallel Learning
learning achieves higher accuracy than the
most accurate single-strategy learner (which The du., objectives of the multistrategy paral-
was BAYES in this case). For the SJ data set, lel learning (MSPL) framework are to improve
improvement was consistently achieved when accuracy using multiple algorithms and to speed
BAYES is the meta-learner in the meta-class- up the learning process by parallel processing in
attribute strategy (improved from 96.4% up to a divide-and-conquer fashion. Since the MSPL
97.6%), regardless of the base learners. In fact, framework is an integration of the multistrategy
when the base learners are BAYES, ID3, and hypothesis boosting (presented in the previous
CART, the overall accuracy was the highest ob- section) and the parallel learning (PL) frame-
tamined. For the SS data set, almost all the results works, we briefly review the PL framework in-
did not outperform BAYES as a single-strategy troduced in (Chan & Stolfo, 1993c) before we
learner, discuss the MSPL framework.

The two data sets chosen represent two differ- 4.1 Parallel learning
ent kinds of data sets: SS is difficult to learn
(50+% accuracy) and SJ is easy to learn (90+% The objective here is to speed up the learning
accuracy). Our experiments indicate that some process by divide-and-conquer. The data set is
of our meta-learning strategies improve accu- partitioned into subsets and the same learning
racy in the SJ data set. However, in the SS algorithm is applied on each of these subsets.
data set, meta-learning did not improve accu- Several issues arise here.
racy. This can be attributed to the quality of
predictions from the base classifiers for the two First, how many subsets should be generated?
data sets. The high percentage of having one This largely depends on the number of proces-
or none correct out of three predictions in the sors available and the size of the training set.
SS data set might greatly hinder the ability of The number of processors puts an upper bound
meta-learning to work. One possible solution on the number of subsets. Another considera-
is to increase the number of base classifiers to tion is the desired accuracy we wish to achieve;
lower the percentage of having one or none cor- there may be a tradeoff between the number of
rect predictions. subsets and the final accuracy. Moreover, the

size of each subset cannot be too small because
In general, the combiner strategies performed sufficient data must be available for each learn-
more effectively than the arbiter and hybrid ing process to produce an effective classifier.
strategies in the test cases studied. To our sur-
prise, the hybrid schemes did not improve the Second, what is the distribution of training ex-
arbiter strategies. This indicates that coalescing amples in the subsets? The subsets can be dis-
the predictions are more beneficial than arbitrat- joint or overlap. The class distribution can be
ing among them. Among the combiner strate- random, or follow some deterministic scheme.
gies, meta-class-attribute was particularly ef- We experimented with disjoint equal-size sub-
fectively. This suggests that predictions alone sets with random distributions of classes.
are not sufficient for meta-learning. Further-
more, BAYES was usually the more successful Third, how do we apply meta-learning to coa-
meta-learner, which coincides with our earlier lescing partial results generated by the learning
intuition that probablistic meta-learners might processes? This is the more important ques-
be more effective than others.
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tion. Our approach is meta-learning arbiters in the classifiers are grouped in pairs. (The strat-
a binary-tree fashion. egy for pairing classifiers is the subject of fu-

ture study and is discussed later.) For each
Based upon a number of candidate predictions, pair of classifiers, the union of the data subsets
an arbiter, together with an arbitration rule, on which the classifiers are trained is gener-
decides a final outcome (similar to the arbiter ated. This union set is then classified by the
strategy described in Section 3.2). An arbiter two classifiers. A selection rule compares the
is learned from the output of a pair of learning predictions from the two classifiers and selects
processes and recursively, an arbiter is learned instances from the union set, which form the
from the output of two arbiters. A binary tree training set for the arbiter of the pair of clas-
of arbiters (called an arbiter tree) is generated sifiers. Thus, the rule acts as a data filter to
with the initially learned classifiers at the leaves, produce a training set with a particular distribu-
For s subsets and s classifiers, there are lo2(s) tion. Detailed strategies for the selection rule
levels in the generated arbiter tree. The manner are reported in (Chan & Stolfo, 1993c) and sim-
in which an arbiter tree is computed and used is ilar schemes can be found in Section 3.2. The
the subject of the following sections. arLiter is learned from this set with the same

learning algorithm. The process of forming

4.2 Classifying using an arbiter tree the union of data subsets, classifying it using
a pair of arbiter trees, comparing the predic-

When an instance is classified by the arbiter tions, forming a training set, and training the
tree, predictions flow from the leaves to the arbiter is recursively performed until the root
root. First, each of the leaf classifiers produces arbiter is formed.
an initial prediction; i.e., a classification of the
test instance. From a pair of predictions and the For example, suppose there are initially four
parent arbiter's prediction, a combined predic- training data subsets (TI - T4). First, four clas-
tion is produced by an arbitration rule. This sifiers (CI - C4) are generated in parallel from
process is applied at each level until a final T1 - T4. The union of subsets T, and T2, U12, is
prediction is produced at the root of the tree. then classified by CI and C2, which generates
Detailed schemes for the arbitration rule are re- two sets of predictions (P1 and P2 ). Based on
ported in (Chan & Stolfo, 1993c) and similar predictions P1 and P2, and the subset U12, a se-
ones can be found in Section 3.2. Since at each lection rule generates a training set (T12) for the
level, the leaf classifiers and arbiters are inde- arbiter. The arbiter (A12) is then trained from the
pendent, predictions are generated in parallel. set T1 2 using the same learning algorithm used
Further issues and strategies for efficiently gen- to learn the initial classifiers. Similarly, arbiter
erating predictions by arbiter trees are beyond A 34 is generated in the same fashion starting
the scope of this paper. Next, we describe how from 7'3 and T4, in parallel with A12, and hence
an arbiter tree is learned. all the first-level arbiters are produced. Then

U14 is formed by the union of subset T1 through
4.3 Meta-learning an arbiter tree T4 and is classified by the arbiter trees rooted

with A12 and A34. Similarly, T14 and A 14 (root

We experimented with several schemes to meta- arbiter) are generated and the arbiter tree is com-
learn a binary tree of arbiters. In all these pleted (see Figure 2).

schemes the leaf classifiers are first learned
from randomly chosen disjoint data subsets and
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tire training set. Moreover, up to a six-fold

Arbiters speed up with eight subsets/processors was still
A 1 Aachieved based on a theretical calculation us-

ing the 0(n2) model ot WPEBLS. (Not much
improvement can be obtained in linear algo-

1 2s3r4 rithms like BAYES.) That is, less time and
TI T2 T3 T4  Training data subsets memory than a serial version is needed to reach

the same results. However, the amount of speed
Figure 2: Sample arbiter tree up leveled off after eight subsets because the

largest arbiter training set appeared at the root,
which formed a bottleneck. Since the pairing

4.3.1 Summary of empirical results of classifiers/arbiters affects the arbiter training
set sizes, we are currently investigating pairing

Experiments on the aforementioned strategies strategies to reduce the size of the largest set.
were run on the four different learning algo- One scheme is to pair classifiers and arbiters
rithms and two data sets described in the Sec- that agree most often with each other. Another
tion 3.4. Details of the experiments and prelim- scheme is to pair those that disagree the most.
inary results obtained from a serial implemen- At first glance the first scheme would seem to
tation are reported in (Chan & Stolfo, 1993c). be more attractive. However, since disagree-
Here we summarize those results. ments are present, if they do not get resolved

at the bottom of the tree, they will all surface
In one set of experiments, we restricted the near the root of the tree, which is also when
training set size for an arbiter to be no larger the choice of pairings is limited or nonexistent
than the training set size for a leaf classifier. (there are only two arbiters one level below the
Hence, the amount of computation in training root). Hence, it might be more beneficial to
an arbiter is bounded by the time to train a leaf resolve conflicts near the leaves leaving fewer
classifier. In a parallel computation model each disagreements near the root. Empirical results
level of arbiters can be learned as efficiently as indeed show that pairing the classifiers that pro-
the leaf classifiers, and hence significant speed duced the larger sets (more disagreements) at
up can be predicted. Our arbiter schemes main- the leaf level reduced the size of the largest set
tained the low accuracy in the SS data set and in the tree.
degraded (up to 10% with 32 subsets) the high
accuracy (90+%) in the SJ data set. The ac- 4.4 Approaches to MSPL
curacy drop in the SJ data can be attributed the
absence of a particular class in half of the arbiter Recall, we seek to both improve accuracy and
tree, resulting from a random class distribution speed up the computation. There are three gen-
in the subsets. Another reason might be the eral approaches in achieving these goals that
small size of each subset, which has about 80 differ in the amount of data used and the man-
examples. ner in which the learning algorithms are applied.

For pedagogical reasons, the following discus-
When the restriction on the size of the training sion will use the combiner approach as the de-
set for an arbiter is lifted, the same level of ac- fault scheme for combining results at the meta-
curacy can be achieved. For the SJ data set, level. Here we present the approaches currently
empirical results show that the single largest under development and some empirical results
arbiter training set is about 30% of the en- obtained for the second approach.
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4.4.1 Coarse-grain diversity with the ative speeds of the learners are then estimated
entire training set by these functions. Given the relative speeds,

we then allocate processors to each learner to
In this approach each learning algorithm is ap- achieve load balancing.
plied to the entire training data set. The learn-
ers are run concurrently and each follows the 4.4.2 Coarse-grain diversity with data
PL framework. As a result, each learner pro- subsets
duces an arbiter tree. The predictions of the
arbiter trees on the training set become part of This approach is similar to the previous one ex-
the training examples for the combiner in the cept that each learner is applied concurrently to
MSHB framework. Since the training of the a different data subset, rather than the entire data
combiner has to be performed after the arbiter set. That is, the data set is divided into I subsets,
trees are formed, all the processors used to train where I is the number of learning algorithms
the arbiter trees will be available for training available, and a different learning algorithm is
the combiner. Again, the combiner is trained applied to each subset. The PL framework is
using the PL framework, which generates an- then applied to each algorithm-subset pair. As
other arbiter tree. During the classification of a result, I arbiter trees will be formed. The pre-
an instance, predictions are generated from the dictions of the arbiter trees on the training set
learned arbiter trees and are coalesced by the become part of the training examples for the
learned combiner (an arbiter tree itself). For combiner in the MSHB framework. Similar to
further reference, this approach is denoted as the previous approach, the combiner is gener-
coarse-all. Figure 3(a) schematically depicts ated as another arbiter tree. When an instance is
the arbiter trees formed. Each triangle repre- classified, the learned arbiter trees first produce
sents a learned arbiter tree. LI, L2 , L3 are the their predictions, which are then coalesced by
different learners (three of them in this case) the learned combiner. This approach is denoted
and Lc is the learner for the combiner. E is as coarse-subset. Figure 3(b) schematically de-
the original set of training examples. Since this picts the arbiter trees formed. LI, L2 , L3 are the
approach is similar to the MSHB framework, different learners and L, is the learner for the
except the use of arbiter trees, accuracy results combiner. El, E2 , E 3 are subsets of the original
similar to those presented in Section 3.4 can be set of training examples.
expected here.

As in the previous approach, load balancing
Since different learning algorithms have differ- is essential in minimizing the overall training
ent complexity, different learners will finish the time. However, in this approach we have to
same task at different times. That is, it is im- determine how to allocate the data subsets as
portant to determine how many processors are well as the processors. One approach is to
allocated to each learner to balance the com- evenly distribute the data among the learners
putational load and reduce any large variance and allocate processors according to their rel-
in completion times. To define and implement ative speeds. Another approach is that each
a scheme to allocate processors and data, rela- learner has the same number of processors and
tive speeds of the learners have to be measured, data are distributed accordingly. That is, we
One approach is to determine the speed of a have to decide whether we allocate a uniform
learner empirically relative to the data set size number of processors or a uniform amount of
and derive a function to approximate the rela- data to each learner. Since the amount of data
tionship between speed and data set size. Rel- affects the quality of the learned concepts, it
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Figure 3: Learned arbiter trees from the MSPL approaches with three different learners

is more desirable to evenly distribute the data Summary of empirical results Experiments
so that the learners are not biased at this stage. on the coarse-subset approach with the strate-
That is, slower learners should not be penalized gies discussed in Section 3 were run on the four
with less information and thus they should be different learning algorithms and two molec-
allocated more processors. ular biology data sets described in the Sec-

tion 3.4. Details of the experiments and prelim-
This raises the question of whether data should inary quantitative results .btained from a serial
be distributed at all; that is, should each learner implementation without the use of arbiter trees
have all the data, as in the previous approach? are reported in (Chan & Stolfo, 1993b). We
Obviously, if each learner has the entire set of summarize those results as follows.
data, it would be slower than when it has only
a subset of the data. It is also clear that the There are three ways to analyze the results.
more data each learner has, the more accurate First, we look at whether the employment of
the generated concepts will be. That is, it is a a meta-learner improves accuracy with respect
tradeoff between speed and quality. But in prob- to the underlying three base classifiers learned
lems with very large databases, we may have no on a subset. For the SJ data, improvements were
choice but to distribute subsets of the data. An- almost always achieved when the combinations
other question is what the data distribution is of base learners are ID3-CART-WPEBLS (im-
for the data subsets. The subsets can be dis- proved from 94.1% up to 96.2%) and BAYES-
joint or overlapped according to some scheme. CART-WPEBLS 2-"om 95.7% up to 97.2%),
We prefer disjoint subsets because it allows the regardless of the meta-learners and strategies.
maximum degree of parallelism. The classes For the SS data, when the combination of base-
represented in the subsets can be distributed ran- learners is ID3-CART-WPEBLS, more than
domly, uniformly, or according to some scheme, half of the meta-leamer/strategy combinations
Since maintaining the same class distribution in achieved higher accuracy than any of the base
each subset as in the entire set does not cre- learners (from 53.9% up to 96.2%).
ate the potential problem of missing classes in
certain subsets, it is our preferred distribution Second, we look at whether the use of meta-
scheme, learning achieves higher accuracy than the

most accurate classifier learned from a subset
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(BAYES in this case). For the SJ data, the an instance is classified, the prediction of the
meta-class-attribute strategy with BAYES as learned arbiter tree is the final prediction. This
the meta-learner always attained higher accu- approach is denoted as fine-grain. Figure 3(c)
racy (from 95.7% up to 97.2%), regardless of schematically depicts the arbiter tree formed.
the base learners and strategies. For the t S data, L1, L2, L3 are the different learners. E is the
all the results did not outperform BAYES as a original set of training examples.
single base learner.

Since each subset is allocated to one processor
Third, we look at whether the use of meta- and different algorithms have different speeds,
learning achieves higher accuracy than the most the size of the subsets needs to be adjusted ac-
accurate classifier learned from the full train- cordingly to achieve load balancing. That is,
ing set (BAYES in this case). For the SJ data, the size of the p subsets is determined by the
meta-class-attribute strategy with BAYES as relative speeds of different algorithms applied
the meta-learner almost always attained higher to the subsets. Another issue we consider is
accuracy (from 96.4% up to 97.2%), regardless how the learning algorithms are allocated to the
of the base learners and strategies. For the SS p subsets and the subsequent training sets for
data, all the results did not outperform BAYES. the arbiters. They could be allocated uniformly,

randomly, or according to some scheme.
As in the results from the MSHB framework
(Section 3.4), meta-class-attribute is the more 4.4.4 Discussion
effective scheme and BAYES is the more suc-
cessful meta-learner. Therefore, it reinforces In terms of learning speed, the coarse-grain
our conjecture that coalescing results are more approaches are slower than the fine-grain ap-
effective than arbitrating among them and pre- proach because the combiner has to be learned
dictions alone are not enough for meta-learning. after all the base arbiter trees are learned; how-
Compared to results obtained from the MSHB ever, only one a-biter tree is learned in the fine-
framework, smaller improvements were ob- grain approach. In terms of overall predic-
served here. This is mainly due to the smaller tion accuracy, the coarse-all approach should
amount of information presented to the base be more accurate than the coarse-subset ap-
learners. proach because of the larger amount of infor-

mation available to each learner in the first ap-
4.4.3 Fine-grain diversity proach. (Recall that each arbiter tree in coarse-

all is trained on the entire training set, which
In this approach the data set is divided into p contrasts to a subset in coarse-subset.) It is un-
subsets, where p is the number of processors clear at this point how the fine-grain approach
available, and a different learning algorithm is will perform compared to the other two and is
applied to each subset. The subsets are paired the subject of further experimentation. Further-
and an arbiter tree is formed in a similar fashion more, the coarse-grain approaches use a com-
as for the single-strategy arbiter tree. That is, biner to coalesce the arbiter trees, whereas the
instead of using the same algorithm for train- fine-grain approach does not. However, more
ing an arbiter and its two children as in the PL diversity is present in the fine-grain approach.
framework, different algorithms are used. This
also results in generating only one arbiter tree, In our experments for the MSHB framework,
which contrasts with generating multiple arbiter one of the learning algorithms (BAYES) con-
trees in the previous two approaches. When sistently performs better as a meta-learner than
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the other algorithms. (Recall, meta-lea.ners Various meta-learning strategies we have ex-
learn from the output of other learners and base plored are also independent of the learning algo-
learners learn from the initial,'raw data.) Since rithms or parallel/distributed environment used.
multiple learning algorithms are available in the Preliminary empirical results suggest that cer-
three approaches, it might be beneficial to use tain strategies and meta-learners are more ef-
the same most effective learning algorithm as fective than others. Our results are preliminary
the meta-learner. That is, different learners are ax.d more experiments are being performed to
used at the leaves, but the same learner is used ensure that the results we have achieved to date
for the rest of the tree. are indeed statistically significant, and to study

how meta-learning scales with much larger data
Moreover, we presently concentrate on improv- sets. The strategies discussed here are by no
ing learning speed via parallelism and predic- means final. We intend to refine our current
tion accuracy via diversity. However, the ar- strategies and explore others as our experiments
biter tree concept for parallel learning can be progress.
extended to improve accuracy as well. Recall
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Abstract because of long lines. When the bank patron

This paper describes a new approach to visits the bank, lines are never exactly the same
conceptual clustering called, clustering for length, and there have been a few times on
single numeric attribute prediction (CSNAP). Friday afternoons when the lines were short.
The events provided to the system have one
attribute that is to be predicted using Yet, the general concept is learned and these
descriptions of the other attributes. The CSNAP rules about the bank are used with confidence.
system addresses the problem of constructing Problems like this occur everywhere: predicting
clusters of points that have a probabilistic value.
In other words, the same state description does the traffic rate at a certain time of day,
not necessarily have the same value for one of determining what time of month the factory will
the key attributes. This paper describes how
statistical methods are combined with machine be busy, etc.
learning techniques in order to build useful
classifications of points. While people are good at understanding and

Keywords: machine learning, multistrategy learning about fairly repetitive events, machine
learning, conceptual clustering, prediction, learning systems are not. The goal of this
statistics research is to produce a learning system that can

1. Introduction understand such problems. In the process of

People have an incredible skill of observing a learning to make accurate predictions there are
two additional objectives:

few instances of a situation and being able to

learn from them. What is learned is not 100% 1) The confidence in the prediction made
accurate, but people still use the knowledge and for such problems can be stated along
develop a sense of its reliability. A simple with the prediction.
example of such a task is learning when the lines
are long at the bank. After just a few visits, 2) The rules used to make the prediction
people learn that going to the bank on Friday are understandable to the humans using
afternoons and before a holiday is to be avoided the system.
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Statistical measures are able to provide the first Many problems are defined by the criteria

capability. Symbolic learning systems are able identified above. These problems define events

to provide the second. This work integrates the that have a dependent variable that is influenced

strengths of each approach in order to provide by the world in non-deterministic ways.

capabilities not found in other learning systems. Similar event descriptions do not guarantee that

The next section of the paper d s t the dependent variable value will be identical.

In order to gain knowledge about the worldmotivation for leveloping the OSNAP system

with special focus on why statistical and there must exist some regularity in those events.

symbolic learning methods needed to be Statistics can capture this type of regularity by

combined. The third section describes the describing the mean and variance of the

CSNAP system and the fourth section presents dependent variable values for a set of events.

results of an application where CSNAP has been The mean value provides a "best guess" for

used to predict building traffic patterns. The events with that state description and the

paper concludes with some final remarks on the variance indicates the confidence or "goodness"

of the guess. The goal of the CSNAP system issystem.
to cluster events to minimize the variance of the

2. Motivation events within a class, thus improving the

confidence of the predictions made using theThe CSNAP system was developed for clsicaon

situations with the following criteria:

Even the best learning system is limited by the
pruerictd (realnd val triabute). idata it is given. The learning system can capture
predicted (dependent variable), the knowledge that is in the data, but not all

* Two events with identical attribute values relevant knowledge is necessarily in the data.

can have different dependent variable This could occur if the problem solver using the

values. knowledge produced by the learning system

operates in a dynamic environment. For
* The attributes used to describe an event need

not e inepenent.example, in the banking scenario presented-
not be independent, earlier, the bank might send out a notice saying

* Accurate predictions for unseen events are they are going to be closed next week to update

required. their accounting system. That information is
added to our knowledge about bank hours so

* Meaningful descriptions of event classes are

that we will not go to the bank next week. That
produced. type of information also needs to be added to the

* The knowledge produced from data should knowledge structures produced from the

be (easily) extendible with additional learning system so the problem solver using it

human knowledge. can account for the new knowledge. This
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suggests the importance of being able to user generate new data with the new knowledge
integrate knowledge from different sources. (Figure IB). It is simpler and mom reliable if
Figure I demonstrates this concept. Some the knowledge can be added directly to the
learning systems deal with this by having the systems knowledge structures (Figure IC).

Examples Examples Examples
New

examples

ML ML ML

_1 New4 Knowledge

Classification Classification Classification4World World World
State State State

Problem Problem Problem
Solver Solver Solver

Prediction Prediction Prediction

A) Original Data B) Update with new C) Directly add knowledge
examples to learned classification

Figure 1. Using New Knowledge
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CSNAP is more like a conceptual clustering a measure of confidence in the results.

system (Michalski, 1983) than a classification Unfortunately, the results are not easy to

system. Just because two events have similar understand by the non-technician. It is also not

rates does not (necessarily) mean that they clear how to add new knowledge to the model

belong together. As Figure 2 illustrates, there is other then performing the steps outlined in

a continuum between classification systems and Figure lB. Several machine learning systems

clustering systems. Classification systems such as ID3 (Quinlan, 1986) and CART

assume that one attribute identifies the class of (Breiman, 1984) have used statistics or similar

an event. Pure clustering systems assume that all measures to induce a model. However, these

attributes are (nearly) equal in their importance systems used statistics to create the
to the found classes. CSNAP is more closely classifications but did not adjust those

related to a goal directed clustering system classifications in order to improve
(Stepp, 1986) because while the rate attribute is understandability of the resulting concept.

treated specially, it does not determine class Connectionist systems, though able to produce

membership by itself. In addition, CSNAP good classifications, do not provi e the learned

develops new clusters of the dependent variable knowledge in a manner that is easily
values (new classes) in an attempt to perform comprehended or extended by humans.

prediction accurately. CSNAP attempts to integrate the use of statistics

Statistics can be used to induce a model from a with the desire to have understandable concepts.

set of data. For example, linear regression As explained in the next section, it is the

provides the best fit line to a set of points, struggle to provide results that are both highly

Models produced with statistical techniques accurate and comprehensible that makes

handle real values very well and often provide CSNAP unique.

Position along this continuum indicates the degree to which a subset of the
attributes is selected as the prima y basis for clustering. Other attributes are
used only to describe the resulting clusters/classes.

Attributes treated more equally

Supervised Clustering
Learning I

ID3 PLS CSNAP COBWEB
AQ AUTOCLASS

CLUSTER/2

Figure 2. Continuum between supervised and clustering learning systems.
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3. CSNAP Implementation The system performs a beam search on the space

The basic CSNAP algorithm is presented in of possible class descriptions. Initially one class

Figure 3. The essence of the approach is in steps is given the description NIL, which covers all

2 and 3, in which a kernel of events is selected events. The description is extended by adding

and an initial description is formed. First the new attribute/value pairs (constraints) to the

system splits the events classified at a node into description in an attempt to cover one of the two

two clusters of events in order to minimize the initial clusters (the classes formed by

variance of the dependent attribute in the two minimizing the variance). Preference for

clusters. The procedure to build the adding attributes to a description are determined

descriptions then uses these initial clusters as a by the percentage difference of values between

guide to constructing the classes. Events are the two original clusters of examples. The

moved between the two clusters in order to percentage difference of values is computed by

construct a cohesive class. As points are moved, determining the percent of examples of the class

the variance of the clusters tends to increase, but that have a specific attribute value and getting

the moves are selected to make the class the difference in this value for the two classes.

descriptions more comprehensible. There is a Adding a previously unused attribute makes the

tradeoff between the concise, clear descriptions description more specific and causes examples

and low variance. The user can adjust weights covered by the more general class to be moved

that are used to balance these conflicting goals. to the other class for this split point. Adding a
value to an attribute already used in the

description makes the description more general.

CSNAP (points, current-node)

1) Sort points on dependent variable

2) Find the cluster of points - .•-i, - allest projected variance

3) Build a description of the ciLuwcr
(Move points to/from cluster as needed to maintain a simple description)

4) Set new-points = points covered by description

5) Create new-node with new-points as child of current-node

6) Call CSNAP (new-points, new-node)

7) Set points = points - new-poin-,3

8) Call CSNAP (points, current-node)

Figure 3. CSNAP Algorithm
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The descriptions are ranked for the search based is a clustering system because the class
upon a weighted sum of the following: memberships are determined dynamically as

the clusters are built.
* Variance

1) The variance of the events covered by It should be noted that step 2 of Figure 3

the description should be as small as requires the calculation of" poj e variance."

possible. Projected variance is closely related to

traditional variance but is based on a statistical
2) The variance of the events not covered stimate of how large the variance of the cluster

by the description should be as small as might become as the number of samples

possible. increases. This penalizes small clusters because

* Generality adding new samples can radically change their

The fraction of the description space variance. If traditional variance were used

covered by the description should be as clusters of size one would always have the best

large as possible. score. Effectively, the system calculates a

tradeoff of the variance to the number of points
included in the set. This allows the system to

The number of attributes and values used in retur larger classes with slightly worse

the description should be as small as variance over smaller classes with better
possible. variance. In addition, the system requires that a

* Number of examples covered minimal number of examples be included in a
class. This provides a parameter that allows the1) The number of examples covered that
user to control the noise tolerated.

were in one of the original clusters
should be as large as possible. While discovering the classes, CSNAP builds a

2) The number of examples covered that classification tree. The tree is organized with

were in the other original cluster should the root covering all the event descriptions and

be as small as possible. its branches covering more specific subsets.
This insures that all possible event descriptionsEach of these values is normalized and scaled to
are covered by some node. Although binary

be between 0 and 1. The weights for each value are used in findin the m al ari

can be adjusted to reflect user preferences on the fortthe ssificains the trees pareanot
systm'sresuts.for the classifications, the trees produced are not

system's results. binary. The found class with the smallest

The outlined approach is similar to ID3 variance becomes a child of the other class,
(Quinlan, 1986) from the standpoint of splitting which remains as the current node. The child is

off points, but similar to AQ (Michalski, 1975) then processed to determine if other splits can be
in the way that descriptions are constructed. It found and likewise, the current node is also
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processed again to determine if other splits may building. The examples from the model are
occur. Thus, a node can have any number of described with eleven attributes (shown in
children, as long as each split produces an Figure 4) and the dependent variable rate. The
improvement in the variance of the data. model takes into account a number of factors

The classification trees produced by CSNAP when determining the rate including season and

provide the capability to answer a query about time of day. When the model creates a daa

the dependent variable for a specific state point, it produces the typical traffic rate for the

(time), determine the state with the predicted specified time period. The actual number of

optimal dependent attribute value, and passengers observed is generated by sampling a

incorporate user's knowledge by adding nod. distribution determined by the traffic rate
supplied by the model. It is this

4. Learning Traffic Patterns non-deterministic number of passengers that is
used by CSNAP for learning. This captures the

In this section, results of running CSNAP on a
idea that in real buildings the rate will not be themodel of building traffic are presented. This
same every day at the same time; there exist

model is not used to help form classes, only to
natural fluctuations in the data.

generate the training events. The dependent

variable is the traffic rate of a building, the Two months of data, sampling the traffic every

number of people entering and exiting the five minutes, produced over 17,000 examples

Attributes Type Values

rate real >0
seconds circular 0-60 (integer)
minutes circular 0-60 (integer)
hour circular midnight, lam, 2am, ..... lpm
day-or-night nominal day, night
day-of-week circular mon, tue,..., sun
day-type nominal weekend, weekday
day circular 1-31 (integer)
week circular first, second, third, fourth, fifth
month circular jan, feb, .. ., dec

year linear >1980
season circular winter, spring, summer, autumn

Figure 4. Building Model Attributes
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for training. The test set was produced by and each integer rate defines a unique class. As

running the model over a (simulated) one week can be seen, CSNAP performs much better than

period (five minute sampling) immediately the other approaches. Figure 6 graphically

following the (simulated) two month training shows the data for a single day with the true

period. Results are shown in Figure 5 model, the actual data, and the traffic predicted

comparing CSNAP, 1D3, and a 10-point by the CSNAP model. This figure illustrates

moving average output for both the actual data that CSNAP has learned a pattern very similar

point, and the true model value. The actual data to the original model, based only on noisy

section compares the systems' predictions to the samples drawn from that model, the actual data.

observed traffic rate. The model section CSNAP did not require a manually developed

compares the predicted rates with the model of the environment, a description of

underlying model of the simulator. In the figure, numbers or types of classes to be found, or any
AAE is the average absolute error of the value theoretical assurances that the attributes are

from the learned model, Var is the variance of independent. Even so, CSNAP was able to
those values, and Max is the maximum value create an accurate and fairly easy to

difference (maximum error in the test set). For understand/modify empirical model of the

the 1D3 results, the rates for the training underlying process.

examples were rounded to the nearest integer,

Actual Data

AAE Var Max

CSNAP 1.04 3.47 30.55

ID3 1.46 14.55 47.00

Mov Ave. 1.64 13.12 35.60

Model

AAE Var Max

CSNAP 0.57 1.89 24.95

1D3 1.31 14.56 47.17

Mov Ave. 1.51 12.74 29.60

Figure 5. Results on Traffic Data
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Since ID3 was not developed to handle real address are not pure learning frim cmp•e
valued dependent variables, the bin size of tasks. In addition, CSNAPhelps scKuninme tde
1 (integers) used in the previous results might step of manually choosing the coect bin size-
not be the most appropriate. Figure 7 shows a CSNAP automatically identifas useful
plot of the errors for a variety of different bin dependent value clusters (bins).
sizes for 1ID3. The original bin size was 1, that Figure 8 shows how the average erro of the
is the actual rates were rounded to integers and predictions decreases as CSNAP constructs the
placed in a class. As shown in the graph, this classification tree. The solid line is the average
choice was near optimum for the binning size. error over the one week testing period in
Even with much smaller bin sizes (0.02) 11)3 passengers per minute. The dashed line is the
does not perform significantly better and the average error for the tree plus one standard
error rate is still much higher than that of the deviation of the error (equivalent to an error bar
CSNAP approach. This helps to demonstrate of one standard deviation for the average error
that the problems CSNAP was designed to line). CSNAP was designed to construct classes

2.

S1 . 5 ............ ...... ... ..... . . ... . . . . . ... .. .... .... .. . ... ..
0

. .. .. . . . . . . ......... ....... .. . . .. . . ......................... .. . .. . ............ .. ...

0 ......... ............. ............. .. ..' ' ' " ' ........ ... .. ..i :........i i ............. ........ .. ... ..
0 ----

0.01 0.1 1 10 500

Category Size (Log Scale)

Figure 7. Error for Different ID3 Category Sizes
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Figure 8. Error and uncertainty decrease as tree grows.

that have small variance and this graph indicates While this might not be as small as desired, the
CSNAP is accomplishing that goal. By taking 11)3 tree for this problem had over 67,000
the difference between the two lines, it can be nodes. 11 This graph (Figure 8) was produced
seen that the standard deviation of error by testing the CSNAP tree after each node was
decreases from 4.2 to 1.3 passengers per minute. added as it worked on the training data set. No
This graph also indicates that the CSNAP pruning was performed.

system does not over learn from the training
data. If it had, the error would increase as the (1]. A standard version oflD3 with CHI squared

tree grew. The completed tree has 470 nodes. pruning was used.
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Part of a classification tree produced by CSNAP prediction would have been 0.19 passengers per

is shown in Figure 9. The tree shown was minute (line 2). It should be noted that it is

generated with 4000 examples from the above possible for a child of a node to have a larger
training set. Each node of the tree is indicated variance than its parent when the tree is finally

on a separate line, with children being indented constructed. When the node was originally

to the right under the parent. The first number separated from its parent the node's variance
in each line is a line number to be used for must have been smaller but since that time other

reference. The I symbol is used just to assist in examples could have been split from the parent

lining up the nodes. The description of the leaving it with a better overall variance. Only

nodes is placed between [ and ]. In this the final examples left in a node are used to

example all the descriptions are a single calculated its prediction (average).

attribute but conjunctions of attributes are

allowed. Internal disjunction of the attribute It should also be observed from this tree

values is allowed as indicated by ... (see segment that adding knowledge to the tree is

line 18). The first number following the trivial. For example, if knowledge were known

description is the average value of the that the traffic rate would increase at 2pm on

dependent attribute for all examples currently Thursday, this knowledge could be added as a

classified by this node. The second number is node after the root. As long as the information

the variance for these examples and the third is added in the tree before the "standard" node

number is the number of examples currently used for that prediction, the new knowledge will

classified by this node. CSNAP attempts to override the learned predictions.

push events as far down in the tree as possible

when classifying new points. For example, if an 5. Conclusion
event comes in that has DAY-OF-WEEK = Adding the powerful features of statistics to
Wednesday and HOUR = 9am and a prediction symbolic machine learning systems is

is wanted, the system would place the event in important. Using statistics, symbolic systems

the first child node that can match (cover) the can add a confidence factor to their results. This

event description. In this example, that is the confidence factor is important to those using the

node on line 4. Since Wednesdays are not knowledge produced by the learning system. So

covered by any of this node's children, the important that some people will not use a system
prediction would be 3.0 passengers per minute without them. Statistics must be integrated into

(on average with a variance of 1.87 passengers the system so that the advantages of symbolic

per minute based on a sample of 24 events). If learning, such as comprehensible descriptions

instead the event had been a Friday, the are not sacrificed. Unless the knowledge
prediction would have been 2.37 (line 5). Had produced does not need to be understood by

the event in question occurred on a Saturday, the humans, it must be a form that they can
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1 [1 17.20 33.21 20
2 1 ((DAY-TE - WEKEND )] 0.19 0.17 1440

3 1 ((DAY--OR-WIGH - NIGHT )] 1.49 0.32 1560

4 1 ((HOUR - 91K )) 3.00 1.87 24

5 ((DAY-C•f-WEK - I )] 2.37 1.01 24

6 [(DAY-OF-Im - THU )] 2.67 1.58 24

7 ((DAY-O1-U1 - *iI )= 2.37 1.62 24

8 [(DAY-OF-MMX - TUE )] 2.92 1.84 24

9 [(HOUR - 3PM )] 4.08 2.46 24

10 [ (DAY-OF-WEEK - TUE )] 3.96 2.29 24

11 1 (DAY-OF-WEEK - FRI )] 4.17 2.38 24

12 I[(DAY-OF-WEEK - MON )] 4.42 3.01 24

13 ((DAY-OF-WEK - WED )] 3.87 2.25 24

14 [(HOUR 10AK )] 0.00 0.00 0

15 1 (DAY-OF-WEEK = THU )] 5.04 3.76 24

16 [(DAY-OF-WEEK = WED )] 4.62 3.78 24

17 [ (DAY-OF-WEEK = MON )] 4.62 3.96 24

18 [(MINUTES = TWENTIETH-MIN.. .TENTH-MIN)] 5.12 3.86 24

19 1 [(DAY-OF-WEEK - TUE )] 5.46 3.90 24

20 ;,(HOUR = 2PM )l 5.54 4.72 24

21 [ (DAY-OF-EEK = TUE )] 4.87 2.97 24

22 [(DAY-OF-WEEK - FRI )] 4.83 4.47 24

23 [(DAY-OF-WEEK =TU )T 5.17 4.09 24

24 [(DAY-OF-WEEK = WED )] 5.12 4.82 24
25 ((HOUR - 7AM )] 26.15 53.49 20

26 1 E[(MINUTES = TENTH-MIN )] 2.50 0.91 20

27 1 [(MINUTES - ZERCTH-MIN )] 2.45 1.00 20

28 ((MINUTES = THIRTIETH-MIN )J 2.70 1.13 20

29 ((MINUTES = TWENTIETH-MIN )] 2.20 1.16 20

30 [(MINUTES = FORTIETH-MIN )] 13.55 28.98 20

31 [(HOUR = 5PM )] 31.50 295.18 8

32 ( (MINUTES = FIFTIETH-MIN )] 2.40 0.98 20

33 [(DAY-OF-WEEK = FRI )] 13.50 221.43 20

34 ((DAY-OF-WEEK = TUE )] 14.25 236.78 20

35 ((DAY-OF-WEEK = MON )] 14.30 251.19 20

36 1 MINUTES = THIRTIETH-MIN.. .FORTIETH-MIN)] 3.62 3.57 8

37 1 1 f(MINUTES = THIRTIETH-MIN )] 4.25 4.22 8

38 1 I (MINUTES = TWENTIETH-MIN )] 5.62 6.79 8

39 1 ((DAY-OF-WEEK = WED )] 21.50 169.46 8

40 ((HOUR = SAM )] 39.30 138.77 20

41 1 ((MINUTES = TWENTIETH-MIN )] 2.65 0.71 20

42 ,1 (MINUTES = FIFTIETH-MIN )] 2.15 0.80 20

43 1 (MINUTES = THIRTIETH-MIN )] 2.15 0.90 20
44 [(MINUTES = FORTIETH-MKT  )] 2.35 1.06 20

45 [(MINUTES = TENTH-MIN , 13.75 19.31 20
46 [(HOUR = 1PM )] 7.17 11.86 24

47 [(DAY-OF-lEEK = TUE )] 6.96 7.19 24

48 [(DAY-OF-lEEK = FRI )] 8.54 12.04 24

49 [(DAY-OF-WEEK - THU )] 7.54 7.43 24

50 ((DAY-OF-W4EEK = WED )] 8.50 12.10 24

Figure 9. Segment of CSNAP tree
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comprehend and extend as they deem necessary. References
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Cooperation of Data-driven and Model-based
Induction Methods for Relational Learning

Edgar Sommer, GMD*

Abstract [Kietz 93]. Many approaches to this task
have been suggested nevertheless; all in some

Inductive learning in relational domains has way restrict the hypothesis space searched.
been shown to be intractable in general. This is done first by restricting the lan-
Many approaches to this task have been sug- guage in which examples and background
gested nevertheless; all in some way restrict knowledge may be expressed. Additionally,
the hypothesis space searched. They can be the language in which the hypotheses are
roughly divided into two groups: data-driven, expressed is restricted. Data-driven meth-
where the restriction is encoded into the al- ods, such as FOIL [Quinlan 90] and GOLEM
gorithm, and model-based, where the restric- [Muggleton/Feng 90], encode this restriction
tions are made more or less explicit with some into the algorithm. In Model-based systems
form of declarative bias. This paper describes such as RDT fKietz/Wrobel 92], GRENDEL
INCY, an inductive learner that seeks to com- [Cohen 92] and CLINT [Raedt 91], the re-
biine aspects of both approaches. INCY is ini- strictions are made more or less explicit with
tially data-driven, using examples and back- some form of declarative bias'.
ground knowledge to put forth and special- Despite the challenge, learning relational
ize hypotheses based on the "connectivity" of concepts has great practical relevance, as
the data at hand. It is model-driven in that evidenced by the ESPRIT projects Ma-
hypotheses are abstracted into rule models, chine Learning Toolbox (MLT) and Induc-
which are used both for control decisions in tive Logic Programming (ILP) funded by the
the data-driven phase and for model-guided European Community2 . The MOBAL sys-
induction, tem for building knowledge based appli-
Key Words: Inductive learning in relational cations [Morik 91][Morik et al. 93] has been
domains, cooperation of data-driven and used to develop several complex and practice-
model-guided methods, implicit and declar- oriented applications. Experience has shown
ative bias. that both data-driven and model-based ap-

proaches offer advantages in such a knowledge
engineering context [Sommer et al. ]. Specif-

1 Introduction ically, FOIL showed great speed in passing
over the data discussed there, but the result-

Inductive learning in relational domains has ing rules where not satisfactory in coverage
been shown to be intractable in general

'For a comparison of GOLEM, RDT and CLINT
"German National Research Center for Computer see [Sutlic 92]

Science, Al Division (13.KI), P.O.Box 1316, D-5205 2 P2145 and P6020 respectively. The work re-
St. Atgustin 1. Gerniany, email eddiQgmdzi.agmd.de ported on here is funded in part through the latter.
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of the goal concept. More significantly. FOIL
(and the class of data-driven methods ii rep- Fa-Grph-t Scale1 EJ #
resents) is a black box whose behavior can-

not be modified. Some of its results may be
statistically correct, but do not fit the de- X& 2

sign goals for the knowledge base, and their ar
discovery inhibits the search for more "sensi- fo _fu

ble" alternative rules. RDT, which is part
of MOBAL, on the other hand was slower, FacitGraph.2 Scale -'1. D] f/
but the results showed better coverage. More
significantly, the declarative bias RDT uses .•_.
can be tailored incrementally, so that later 2 ar 3

results where both better in coverage than foobarfll

FOIL's and comparable in speed. The work
reported on this paper is an attempt at com-
bining the speed of heuristically guided data-
driven methods with the variability of model- Figure 1: Fact graphs before and after ex-
based approaches. panding object z

specific data at hand. Even if none of the hy-
2 INCY potheses are acceptable, or INCY's rules do

not cover a sufficiently large subset of the
A rule model is a higher order expression known examples of the learning goal, a host of
similar to a rule, except that predicate vari- rule models are produced that directly reflect
ables appear at the place of predicates (refer the structure of the data wrt to connectiv-
to [Kietz/Wrobel 92] for a precise definition). ity, i.e., which arguments of which predicates
A rule is so seen as being an instance of a appear at which places in which other predi-
corresponding rule model, where the model's cates.
predicate variables are instantiated with spe-
cific predicate names. A model based learner
such as RDT generates hypotheses by per-
forming these instantiations in a systematic The motivation for INCY's inner workings
manner with predicates from the domain at comes from a form of data inspection pro-
hand'3 . vided by MOBAL: the fact graph shows an
Rule models can and do exist indepen- incrementally extendable excerpt of a given
dantly of a specific domain (cf. "cliches" knowledge base as a graph. Facts' arguments
in [Silverstein/Pazzani 91].). Naturally, such (the objects in the domain) are nodes, and
generic models will not fit arbitrary data. the predicates in which they appear are arcs.
I.NCY is. learning algorithm designed to make Given an example of the learning goal in a do-
a somewhat frivolous pass through a given do- main, the graph initially shows all the facts
main and generate example hypotheses and known about the example's arguments. with
rule models based on the connectivity of the the arcs linking arguments to other objects.

3 The use of rule models as declarative bias goes The graph can be expanded to show all facts
back to [Emde 87]; a very similar approach is used in about these other objects, causing yet other
[Silverstein/Pazzani 91]. objects to appear, etc. (Fig. 1). Eventually.
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the graph will be fully expanded, displaying Vere's Thoth-pb induction method for re-

all facts about the example's arguments and lational productions uses association chains
objects they are linked to. Some conjunction to selectively augment examples with back-
of a subset of these facts must be a valid rule ground information before generalization
about the concept. Unfortunately, the num- [Vere 77]. Rather than logical induction, the
ber of conjunctions theoretically possible is topic here is finding operators that describe
quite large; often all facts in the domain are in change in discrete scenes, similar to string
some way 'connected' to the objects appear- rewrite rules and STRIPS operators. But the
ing in the example, so that any member of the idea of selecting descriptors along relational
powerset of the set of all facts in the domain links between objects and being conservative
is a possible hypothesis. The idea is to incre- about expanding the association chain of such
mentally expand the set of candidates, guided links is related to the approach taken here.
by the incrementally expanding graph. If we
have a learning goal foobar(x,y,z) and the
partial hypothesis 2.2 The INCY algorithm

foo(x) & foo(y) -- + foobar(x,y,z)
we will want to add something about z to the INCY begins by selecting an example of the

premise before testing the validity of the hy- concept to be learned. For each object ap-
pothesis. The candidate must be among the pearing as an argument in the example, the

facts about z: set of known facts about it is collected (the

foobar(x,y,z) about set). One candidate from each of these

bar(v ,z) sets is selected to form a preliminary premise

bar(y,z) ... for the hypothesis. More than one of the ob-

The question is: which of these is the best jects appearing in the example may occur in

new conjunct? Quinlan's FOIL [Quinlan 901 one candidate fact, so that the resulting can-

algorithm, for instance, uses the "information didate set may be of size smaller than the

gain" heuristic to select a candidate, i.e. its arity of the example. INCY keeps track of the

value is measured in terms of the role it plays candidates used across the iterations of this

in all known examples of the goal. The IN- selection of preliminary conjuncts for one ex-

DUCE algorithms, though they are applied ample to be able to avoid specializing permu-

to structured objects rather than relational tations of the same hypothesis.

concepts. can be seen as relying on a pre- Linked-enough analysis

classification of candidates with additional This premise is subjected to a "linked-

heuristicsf[Iichalski 83]. INCY takes a more enough" analysis before actually testing the
basic approach, relying only on the connec- hypothesis. In the course of this analysis, the
tivity information represented by the graph. premise may be augmented by one or more
It tries to select a candidate which is "most conjuncts to ensure that all arguments are
linked" to the other objects in the rule, and sufficiently linked. An argument is linked-
which preferably does not introduce a new enough if is not free, i.e. it appears in at

object. In other words, it tries not to ex- least two literals of the hypothesis. It is
pand the graph, but rather find a fact con- linked to the other arguments of the literals
cerning objects already visible. In the exam- it occurs in. INCY collects the 'problem' ar-
ple, INCY would give preferance to bar (y,z), guments that do not pass the linked-enough
because bar(v,z) would introduce a new ob- test. and for each tries first to find a new

jectCv (Fig. ). conjunct linking it to the head arguments.
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INCY top levelI
while there are uncovered examples of the goal concept
, select an example

D- construct about sets for the example's args
c while there are combinations of candidates

c* form prelim. conjunction by selecting one candidate fact from each about set
Sperform linked-enough test/modifications on this conjunction of facts
, form & test hypo
Sfail (backtrack) or specialize hypo

c, end{hypo generation loop for one example}
c- fail (backtrack to another example or end)
end{ example selection loop}

IINCY specialize hypol
while premise is not longer than c*axrity(goal)
c. construct about sets for all 'variables' occuring in hypo
c select a new conjunct for the premise from the about sets
o perform linked-enough test/modifications
c form & test hypo
c* fail (backtrack) or further specialize hypo
end{ specialization}

Figure 2: Pseudocode for INCY's data-driven phase

to other premise arguments otherwise (here is abstracted from the hypothesis (in anal-
giving preference to the other problem argu- ogy to abstracting a rule from a conjunction
ments). As a last resort, an argument may of facts, here the predicate names are turned
be marked as a constant if no suitable con- into variables). The results of the test can be
junct is found. Section 4 gives a formal defi- one of:
nition. The linked-enough test/modification, rule known
in contrast to specialization described below, rule model known
does not introduce new arguments into the hypothesis too specific
hypothesis. It can be interpreted as a sort hypothesis accepted
of consolidation phase after which all argu- hypothesis too general
ments are sufficiently bound (or described, or In the first four cases, INCY backtracks.
linked): either they appear repeatedly in the This is straight-forward in the hypothesis
hypothesis, or they are marked as constants. too specific case, but why not special-

ize when rule known, rule model known
Hypothesis formation and test or hypothesis accepted? The decision

The 'hypothesis' thus reached is a conjunc- not to specialize here is what underlies the
tion of facts - it is now turned into a true hy- built-in frivolity of INCY's data-driven phase
pothesis by systematically substituting vari- and allows it to put forth a maximum of
ables for constants. Testing procedures as de- structurally different hypotheses in relatively
scribed in [Kietz/Wrobel 92] are applied to short time, since it avoids producing struc-
this hypothesis. In this process, a rule model turally equivalent hypotheses. In one strat-
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egy of cooperation discussed (Section 3), structure influences INCY's behavior in sev-
a model-based learning phase is initiated eral ways:
when hypothesis accepted, so that such 9 After abstracting a hypothesis to a rule
hypotheses are systematically enumerated. model, the new model is compared to ex-
Note that a rule model is retained for pos- isting models by an extension of theta-
sible later use regardless of whether the cor- subsumption [Kietz/Wrobel 92].Redundant,
responding hypothesis was accepted. i.e. structurally equivalent models are
If, in backtracking, there are no other ways caught at this point, and this causes
of ensuring the hypothesis is linked-enough, INCY to backtrack (search for a different
other preliminary candidates are selected. If specialization or select different conjucts
no good combinations (as described at the for the preliminary hypothesis).
beginning of this section) are available, a new . If the data-driven phase should discover a
example is selected. Only in the final test rule that is already known, this is discov-
result case (hypothesis too general) is the ered during the test and specialization is
hypothesis is specialized, aborted.
Specialization * The criteria used to decide if a hypothesis is

Specialization is a modified version of the acceptable, too specific or too general are

linked-enough modification above: the new parametrized. Changing their values cause

conjunct should ideally link a head variable INCY to accept more or less general and

to one of the premise variables. If no such more or less bold hypotheses. Since INCY's

fact is available, the next preferred type is decisions about when to specialize, when to

one that links two premise variables (both select different conjuncts about the current

may introduce a new variable in addition to example's arguments, and when to try a

linking two existing ones). If this, too, is different example depend on the outcome

impossible, a new conjunct binding one of of this test, changing their values signi-

the non-head variables is selected. The cru- fanctly change INCY's behavior.

cial difference to the linked-enough modifica- 2. The rule models generated during INCY's

tion is that here new variables may be intro- pass over data can be used in a subse-

duced into the premise. A subsequent call quent, more stringent analysis. During this

to the linked-enough analysis ensures that model-based pass, the models are instanti-

none of these remain free. From here on, ated with fitting predicates from the knowl-

INCY proceeds in the same manner as above edge base [Kietz/Wrobel 921. This may result

(see Fig. 2). The depth-bound for specializa- in two different types of rules:

tion is a function of the goal concept's arity * Rules structurally equivalent to one of those
c*arity(goal-concept). c can be modified discovered during the data-driven phase:
via parameter. each of those initial rules can be under-

stood as being an example for a set of
rules. Naturally, such structurally equiva-

3 Cooperation lent rules will, in general, be quite different
in "meaning".

The two basic forms of cooperation between * Rules not structurally equivalent to any of
data-driven and model-based methods have the rules discovered by INCY, but based
already been touched on: on one of INCY's rule models nevertheless.
1. A rule model is abstrac~ed from a hypoth- INCY misses many acceptable rules be-
esis and used to test hypotheses. This call cause its pass is guided not only by the
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test results that pertain to a specific hy- cessful in this sense after one of the data-
pothesis, but also by the (pre-) existence driven passes inner loops has terminated. A
of rule models. This is the reason for third possiblity is to call model-based meth-
INCY's built-in frivolity, but also for its ods with the most successful branch of the
speed. INCY may discard a hypothesis model subsumption tree: the set of increas-
whose corresponding rule model - with dif- ingly special (by theta subsumption) models
ferent instantiations of the predicate vari- corresponding to the highest number of rules
ables - yields plausible rules. These rules discovered by INCY.
are found in the model-based pass. The first of these dynamic cooperation

schemes has been implemented. Note, how-

3.1 Other Schemes of Cooper- ever, that this significantly alters INCY's be-

ation havior. The sequential version described in
Section 2.2 is designed to quickly discover

Sequential cooperation a maximum of vari-structured rules, each of
The basic cooperation scheme discussed which can be viewed as an example for a
above is dynamic in that INCY makes model class of structurally equivalent rules. On
generation and hypothesis testing calls, but the other hand, the dynamic combination of
learning itself is strictly sequential: INCY pre- model-based and data-driven strategies will
processes data - discovering some rules and test the entire classes of rules immediately,
more rule models - and a model-guided in- and take accordingly longer to complete a
duction step can be called subsequently. In pass. The sequential version will be of more
the knowledge engineering context provided use in a knowledge engineering context where
by MOBAL, this is fitting, as it allows the use a quick preliminary analysis of large amounts
of INCY for a quick initial analysis of data of data is desirable. In the dynamic version,
and RDT for a more concerted later effort. INCY functions more as a model-generator for
A more selective use of the rule models pro- an RDT-like method, producing the models
duced by INCY is also possible, however. Af- it needs on the fly, based on the connectivity
ter INCY has completed its pass, for instance, of the knowledge base at hand.
a domain expert may scan the rules found
and select those that seem most promising; 4 Results
RDT can be made to search only for similar
rules by passing on only those models which The hypothesis language defined procedu-
the promising rules are instances of. Alterna- rally by INCY can be described as:
tively, the expert may inspect 'he rule models
found by INCY and pass only those deemed £LS= = {h= Lprms - lconc I
plausible on to RDT. 3a: {lcon U Lprems }I C Bg
Dynamic cooperation A linked - enough({lico,0 , Lprems})
In the same vein, INCY may make selective A ILpr,,mol < depth - bound(lco,,d)}
calls to a model-based pass from within its
data-driven pass over data. For instance, be- where l, is the conclusion literal (the
fore backtracking or specializing when a hy- head), Lpres is the set of premise literals.
pothesis is accepted, a model-based pass may and Bg is the set of facts that make up the
be initiated to learn with the corresponding knowledge base'. a is a substitution of terms
rule model only; or such a pass may be initi- 4Note that instances of the learning goal are also
ated with the list of models that were suc- in Bg, i.e. INCY may learn recursive rules.
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for variables such that two different variables Note that variables for which this condition
are replaced by different terms: cannot be fufilled are turned into constants

during linked-enough analysis. On the whole,
a E {vi/t V 1 <ti <3 <t this is a weaker restriction than that of ij-

v t, j ar V roi u t) determinacy used in GOLEM, since determi-
A t,, t, are ground)} nacy is not supposed, and there is no explicit

The space of such hypotheses is searched top- depth limit (i) for the variables occuring in

down. Note that INCY's data-driven phase a hypothesis, so that INCY is able to learn

discovers only a subset Rpoivolo C Zigaliii C in domains where GOLEM isn't. FOIL's in-

£C)S.5 of all such rules valid in a given domain, formation gain heuristic ensures that only

The model-based phase continues this work, linked conjuncts are added to the premise

but does find all lv.•lid because specializa- during specialization, but accepts hypotheses

tion is aborted when a rule model is already with free variables, so that its implicitly de-

known (recall Section 2.2). The next restric- fined language cannot be compared directly

tion imposed on the base language (function- to £hs. Some tests indicate that FOIL's

free Horn clauses with negation is that the heuristic does not do well with sparse data
premise together with the goal of a hypothe- because there is little information gain tosis must be wi th theton 2.2): work with. In the presence of a few neg-selinked-eiough (Section 2.2): ative examples, FOIL can no longer apply

linked - tnough( {lcon,,, Lprem,}) = the closed world assumption and finds non-
Vv E Vti.... 3 Vprem E VLpre.. : V = Vpre, generative rules which do not cover any of the

A Vv E VL,,e .. 3Vcoci E Vi.. : exampless. INCY does not make the closed-
linked(u, vct) world assumption, so that its results are not

A Vv E Vt,,.... 311, 12 E Lprem, : affected.
11 # 12 A v E V1' A v E Vi2) The main difference between FOIL and INcY,

as far as results are concerned, is that the
where V1..., are the head variables, and rules discovered are quite different struc-
VLp.... are the variables occuring only in the turally, and that INCY discovers far more
premise. The linked relation between vari- rules. This may or may not be deemed an
abies of a hypothesis is best defined recur- advantage, as INCY's rules tend to be more re-
sivelv: dundant than FOIL's (several rules cover an

linked(vl, V2) =*~ example). Among these there are often more

31 E {/cod U Lpre:s} " V1, V2 E Vi sensible ones - from a knowledge engineering

V 1V3 : {ionk vl, vem AV3) point of view - than those FOIL homes in on.
"linked(v, v3) A linked(v2, v3 ) When using INCY as a model-generator for

This formalization defines a superset of the induction algorithms using declarative bias,
hypotheses that pass the linked-enough test such as RDT, GRENDEL and CLINT, di-
in the top-level loop (Fig. 2): the modifi- versity in models is a plus. INCY learns re-
cations made during linked-enough analysis cursive rules and rules with constants, and
there do not introduce new variables. These hence models which reflect this. FOIL was
are introduced during specialization, so that more affected by sparcity of examples, where
the definition above is precise wrt INCY's information gain has little to work with, and
overall behavior. 'In these rules, not all variables were bound in the
The main effect of this is that hypotheses premise. MOBAL'S inference engine does not apply

with free variables are not put forth by INCY. such faulty rules.
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rules induced using INCY's models scaled up [Morik et al. 93] K. Morik, S. Wrobel, J.-U. Ki-

better when new examples were incorporated etz, and W. Emde. Knowledge Acquisition and

into the knowlege base, but experiments in Machine Learning - Theory, Methods, and Ap-

other domains are underway to corroborate plications. Academic Press, London, 1993. to

this. appear.
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Abstract 1. Introduction

This paper presents a method for multistrategy Conventional concept learning techniques
constructive induction that integrates two generate hypotheses in the same representation
inferential learning strategies-empirical space in which original training examples are
induction and deduction, and two presented. In many learning problems,
computational methods-data-driven and however, the original representation space is
hypothesis-driven. The method generates inadequate for formulating for the correct
inductive hypotheses in an iteratively modified hypothesis. This inadequacy can be evidenced
representation space. The operators modifying by a high degree of irregularity in the
the representation space are classified into distribution of instances of the same class in the"constructors," which expand the space (by origin ofprestaneon same.

generating additional attributes) and original representation space.
"destructors" which contract the space (by In a situation, there exists a mismatch between
removing low relevance attributes or the complexity of concept boundaries in the
abstracting attribute values). Constructors space and the capabilities of the descriptive
generate new dimensions (attributes) by constructs of the representation language to
analyzing original or transformed examples describe the boundaries. Consequently, if the
(data-driven) and by analyzing the rules desdrie are hies. irreguly, ical
obtained in the previous iteration (hypothesis- boundaries are highly irregular, typical
driven). Destructors detect the irrelevant constructs used in learning systems will likely
components of the representation space by rule- be inadequate for representing them. Such
based inference or statistical analysis. The typical constructs include nested axis-parallel
method has been implemented in the AQ17- hyper-rectangles (decision trees), arbitrary
MCI program. The preliminary results from axis-parallel hyper- rectangles (conjunctive
applying it to a problem with noisy training rules with internal disjunction, as used in
data and large number of irrelevant attributes VL1), hyperplanes or higher degree surfaces
demonstrated a superiority of the method over (neural nets), compositions of elementary
other constructive induction methods both in
terms of the predictive accuracy, as well as the structures (grammars), etc.
overall simplicity of the generated descriptions.

To address such problems, the idea of
Key words: multistrategy learning, constructive induction has been introduced
inductive inference, constructive induction, (Michalski, 1978; Watanabe and Elio, 1987,
representation space, concept learning.



189

Matheus and Rendell, 1989; Rendell and conditions," "extension against," "adding an
Seshu, 1990; Wnek and Michalski, 1991). alternative," "closing interval," and "climbing
Constructive induction can be viewed as a a generalization tree."

"double-search" process, that searches both
for a hypothesis and for an adequate The representation space search operators
representation space in which to express this modify the representation space. The AQ17-
hypothesis. MCI method uses both "constructors," that

expand the space by adding new dimensions
Most constructive induction methods use a (attributes), "destructors" that contract the
specific technique within one basic space by removing less relevant attributes
computational method. Basic methods are and/or abstracting values of some attributes.
classified to data-driven, hypothesis-driven and
knowledge-driven (Wnek and Michalski, 1991, To perform a representation space search,
1993). Recently, there has been a trend toward meta-operators are introduced that allow the
"multistrategy" constructive induction system to suggest different representation space
approaches that integrate several techniques and search operators and methods ("constructive
methods, induction strategies"). Using the ITL

framework, the selection of constructive
This paper presents early results on the induction strategies is done by applying the
development of a multistrategy constructive operator selection rules based on the evaluation
induction system, AQ17-MCI, that aims at of hypotheses generated in consecutive
integrating a wide range of constructive iterations i.e. by "exploring the learner's
induction techniques and methods. The basic experience".
ideas and the architecture of the system are
based on the Inferential Theory of Learning This paper describes several techniques and
(ITL), proposed by (Michalski, 1992). In ITL, methods for representation space search, their
learning is viewed as a "goal-directed process integration in AQ17-MCI system, and the
of modifying the learner's knowledge by results from testing the system and comparing
exploring the learner's experience." it with several other systems. The hypothesis

space search is assumed to be done by the
As mentioned above, a constructive induction standard AQ-type algorithm.
learner performs two types of searches-a
search for an inductive hypothesis and a search 2. Related Research
for an adequate representation space in which
the hypothesis is represented. These two types The MCI method is relevant to both the
of searches require different types of search research in constructive induction and
operators. multistrategy learning. Related work includes

the system LAIR (Watanabe and Elio, 1987),
The search for a hypothesis applies operators and "Principled Constructive Induction"
provided by the given inductive learning (Mehra, Rendell and Benjamin, 1989). LAIR
method. For example, the AQ17-MCI method uses domain-specific background knowledge to
(briefly, MCI) uses operators employed in the construct new attributes. Principled
AQ-type learning systems, such as "dropping
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constructive induction uses geometric textures or shapes), seems to require a number
interpretations of various constructors to guide of different techniques for the representation
their selection. Neither of these approaches, space change.
however, possesses the wide range of
constructors and destructors available in MCI. Given several such techniques, a problem

arises of choosing the one that is most fit for a
Other related systems are STAGGER that given situation. This problem is somewhat
integrates techniques for Boolean, numerical analogous to the problem of choosing an
and weight learning (Schlimmer, 1987). inductive learning method to fit the given
GABIL, for adaptive strategy selection, based problem at hand. Aha (1992) -has proposed to
on classification performance (Spears and solve the latter problem by using meta-rules
Gordon, 1991), and MBAC, which uses that link the properties of training datasets with
parabolic models of strategy performance for various empirical inductive learning methods.
strategy selection (Holder, 1991). The strategy
selection in MCI also draws inspiration from To choose among many representation space
research on the development of large scale modification operators, the MCI method uses
inference systems, especially INLEN meta-rules that link the properties of the
(Kaufman, Michalski and Kerschberg, 1991). training datasets and properties of the
In INLEN, knowledge acquisition or discovery hypotheses generated from these datasets with
is based on learning rules from expert-supplied the appropriate representation space
examples. The automated acquisition of rules is modification operators.
most suitable to areas where expertise is
difficult to quantify, or where rules may need 3. The MCI Method
to be modified often, such as in the case of
strategy selection for constructive induction. 3.1 An Overview

Several systems have been developed that The MCI method integrates a large number of

exhibit constructive induction capabilities. different representation space modification

Some of the earliest were INDUCE (Michalski, techniques that are used to determine an

1980) and LEX (Mitchell, Utgoff and Banerji, adequate representation space for concept

1983). Many systems are based either on an learning. The process of concept learning itself

analysis of the training data, i.e., data-driven if done by an AQ-type inductive learning

systems (e.g., Schlimmer, 1987; Bloedorn and method.
Michalski, 1991), or an analysis of
hypotheses, i.e., hypothesis-driven (Matheus A general flow diagram for the MCI method is

and Rendell, 1989), (Pagallo and Haussler, shown in Figure 1. The input data are initially a

1990), (Wnek and Michalski, 1991, 1993). user-provided training dataset plus a
characterization of the initial representation

These techniques are not very useful in space, which includes a description of

situations requiring different types of attributes, their types and their domains. The

knowJ•'dge representation space change. For training dataset is split into a primary and a

example, learning from complex and noisy secondary dataset. The primary training set is

sensory data (e.g., learning to recognize inputted to the Decision Rule Generation
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USER

Decision Rule Representation Space
Generation Modification

0 Rule Evaluation

OUTPUT

Figure 1. A functional diagram of the MCI method.

module, which uses an empirical inductive next sections describe in greater detail various
learning program (AQ14) to generate general aspects of the above process.
concept descriptions (rulesets). The obtained
rulesets are evaluated in terms of their 3.2 Determining When to Modify the

complexity and their performance on the Representation Space

secondary training set. Based on the results of The representation space needs to be modified
this evaluation, the system decides either to if there exists a mismatch between the
stop the learning process (the obtained rules ar distribution of examples in the space and the
outputted as the solution), or to move to the capability of the representation language to
Representation Space Modification module, adequately describe this distribution. This
This decision is based on special control meta- mismatch can be removed either by developing
rules (Section 3.2.). The final decision rules a learning algorithm capable of generating more
are evaluated on the testing examples to complex discrimination surfaces in the given
determine their performance. Figure 2 shows representation space, or by changing the
the partitioning of the input examples into representation so that simple discrimination
different classes (primary and secondary surfaces will do the job. For some problems,
training examples, and testing examples), and the first approach is infeasible.
explains how they are used.

The constructive induction approach is to
The representation space modification is done modify the representation space to removc the
by an application of various constructive mismatch. An illustrative example of such a
induction operators, acting as constructors or mismatch is the "bit parity detection" problem.
destructors. Once a new representation space A description of binary strings with this
has been determined, both the primary and property in terms of the bit positions in the
secondary training dataset is reformulated into string is very complicated and long. If,
this space, and the process is repeated. The however, one generates an additional attribute
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L1 earr intermediate rulesets in the
Training Examples: original representation space
Primary set

i[ [Evaluate predictive accuracy of the
Input Examples Training Examples: intermediate rulesets for testing the

Secondary set adequacy of the representation space

Testing Examples Evaluate predictive accuracy of the final14 rulesets generated in the transformed
representation space

Figure 2. Subsets of the examples and their role.

(a dimension in the representation space) is unsatisfactory, the method enters the
"mod2" of the sum of the bits in the string, the Representation Space Modification module.
problem becomes trivial. The MCI approach is
to apply a wide range of such operators for 3.3 Determining How to Modify the

representation space change in order to Representation Space
determine a description space in which it would 3.3.1 Meta-attributes and Meta-rules
be easy to find the correct or approximately
correct decision rules. The representation space is modified by

I applying a variety of operators. These
The problem arises of how to detect the need operators include both constructors that expand
for representation space change. The MCI the space and destructors that contract the space
method solves this problem on the basis of the (see Section 3.3.3). The choice of the
"quality" of descriptions (rulesets) generated operators is guided by the meta-rules that relate
by the Decision Rule Generation Module. The the properties of the example dataset and the
"quality" of the obtained ruleset is evaluated in rule evaluation results on the secondary training
terms of its predictive accuracy on the set to the most appropriate operators. These
secondary training set and its complexity. If the rules are initially provided by the user, and later
quality is "satisfactory", according to the user improved through learning from the meta-
or some heuristic criterion, then the process examples mentioned below.
stops. A description of the dataset of examples
in terms of certain meta-attributes is stored in The meta-examples are described in terms of
the system's knowledge base to serve as a meta-attributes. These meta-attributes are
"meta-training example." organized into four classes: those characterizing

types of the original attributes (numeric,
Meta-examples are used to represent datasets multivalued nominal, Boolean, etc.), those
that both require some kind or representation characterizing the attribute quality, such as the
space modification and those that do not. These attribute utility (Imam and Michalski, 1993) or
meta-examples are used to develop meta-rules the entropy measure (Quinlan, 1983), those
guiding the decisions about the need for the characterizing the expected level of quality of
representation space change. If the rule quality
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Meta-attznbutes Numencp-attribute&...present Yes, No Yes, if data contains two more
detecting the numeric attributes;
presence of various No, otherwise
types of attributes

Nominal attributespresent Yes, No True, if data contains two or
more multi-valued nominal
attributes;

False, otherwise
Boolean_attributes-present Yes, No True, if data contains two or

more Boolean attributes;
False, otherwise

Meta-attributes Irrelevant-attributes present Yes, No Yes, if data contains any
characterizing the irrelevant attributes;
attribute quality No, otherwise

Attribute.group-quality Sufficient, Sufficient, if the minimum
Insufficient quality of the set of attributes

is above an assumed
threshold;

Insufficient, otherwise

Meta-attributes Overprecision Yes, No Yes, if an attribute in the given
estimating the set is measured with an
quality of examples excessive precision.

No, otherwise

Attributevaluenoise_level Error rate in Teacher-estimated error rate in
percentage the measurement of the attribute
(1.. 100%) values in the examples

Classification_noise_level Error rate in Teacher-estimated error rate in
percentage the assignment of examples to
(1..100%) classes by the teacher

____ ____ ___ ____ ____ _________ ("mislabeling")
Meta-attributes Performance_estimation Accuracy in Predictive accuracy of the last
estimating ruleset percentage ruleset generated from the
performance (1.. 100%) primary training example set

and tested on the secondary
testing set.

Performance-change Strongly Measures the difference in
Up, Up, performance between the nth
No change, ruleset learned and the n-lSt
Down, ruleset learned
Strongly
Down

Table 1. Meta-attributes for characterizing datasets.
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the examples, and those characterizing the representation space operator (e.g., a modx of
changes in the performance of the generated the sum of the values of the attributes).
rules on the secondary training dataset. Table 1
presents a list of meta-attributes. With the The contribution of an individual attribute in the
exception of Irrelevant_attributespresent, and context of a set of attributes can be measured
Attribute-group-quality, which can be by analyzing rules generated from examples
automatically calculated in a manner described described in terms of these attributes (Wnek
below, the values of these meta-attributes are and Michalski, 1993). The meta-attribute
provided by the user. "Irrelevantattributes-present" views an

attribute as irrelevant if this attribute is not
a) Attribute Type present in the rules, or is present only in the

"light" rules (rules associated with low values
The applicability of the tepresentation wpace of t-weight parameter the coverage of training
modification operators (for short, RSM examples by a rule).
operators) depends on the type of the attributes.
For example, arithmetic operators apply to An alternative measure of the individual
numeric attributes, logical operators apply to attribute quality is the attribute utility (Imam
Boolean and multi-valued nominal attributes, and Michalski, 1993). An attribute utility is the
etc. The type of attributes for which different sum of the class utilities of an attribute. The
RSM operators are available are currently class utility of an attribute is the number of
numeric, multi-valued nominal and Boolean. classes whose attribute value set has no

common values with the value set occurring in
b) Attribute Quality the given class. An attribute is considered

irrelevant if its attribute utility is low. Thus,
Attribute quality measures the ability of a single Irrelevantattributesjpresent is true if, for any
attribute to discriminate among given classes of attribute present in the data, the utility of that
examples. An attribute may contribute attribute is below threshold.
individually, or as part of an attribute group.
Individual attribute quality can be measured c) Ea kple Quality
statistically by calculating the ability of an
attribute to partition the example set The quality of training examples is
appropriately. One such measure is the characterized in terms of three meta-attributes.
information gain used in 1D3 (Quinlan, 1983). The first one, "Overprecision," tests if a given

attribute is measured with an excessive
The value of the meta-attribute precision. In such a situation, the valueset of
"Attribute-group.quality" is "True" if each the attribute is reduced, and the values of this
attribute in the given group of attributes has attribute in the examples are substituted by
gain greater than a user-defined minimum. This more abstract values. The second meta-
meta-attribute is useful for detecting situations attribute, "Attributevaluenoiselevel"
in which each original attribute has some expresses a teacher-estimated error rate in the
relevance, but not very high, which may be measurement of the attribute values in the
suggestive of the need for some multi-argument examples. The third meta-attribute

"Classification_noise_level" expresses a
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Constructive Induction Operators

Constructors Destructors

Data-based Rule-based Logic-based Statistic-based

A
L a rica thmetic Candidin /Auribute

grouping removing envg

Multi-valued Binary Value- Rule- Value- Instance- Value- Instance-
grouping grouping removing removing removing removing

Figure 4. A hierarchy of constructive induction operators

teacher-estimated error rate in the assignment of and their values. Operator selection is a
classes to examples to classes by the teacher deductive process of applying previously
("mislabeling"). learned representation space modification

operator rules to these meta-attribute vectors.
Overprecision is reduced by proper This matching procedure calculates a degree of
quantization of the attributes (e.g., Kerber, match between the meta-example and the RSM
1992). Noise in the data is reduced by filtering rules using ATEST (Reinke, 1984).
training data through "heavy" rules (with high- Representation space modifiers are then ranked
weight) in the induced descriptions in decreasing order of match. If no single RSM
(Pachowicz, Bala and Zhang, 1992). rule is the top rule, then the user is asked to

select. This selection may be based on the
d) Rule Performance user's preference for different types of

There are two meta-attributes in this category: modifications such as arithmetic constructions

"Performance_level" that measure the over logical constructions.

performance accuracy of rules on secondary It may occur that the same RSM operator is
training examples, and "performance change" repeatedly selected. In other words the search
that expresses the change in performance from stagnates on a local maximum. MCI attempts to
one rule generation iteration to the next. Theseguidethe li of prevent this by updating the database
meta-attributes help guide the selection of characterization after each ruleset evaluation.
representation space modifiers by detecting Since the meta-attributes are updated
when successive iterations are making continuously, the selection stage picks the
significant positive increases in rule quality, or operator that best matches the current database
when the change in quality has declined or characterization. If all available operators fail to
ceased. match the description (i.e., the degree of match

is below a threshold) then selection stops and
3.3.2 Applying Meta-rules for Operator MCI evaluates the current ruleset on the testing
Selection examples. At minimum the best performance of

MCI will be that which is achieved when no
Each example dataset is characterized by a modifications are made to the representation
vector of the previously listed meta-attributes
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space. In this case the performance of MCI will characterization greater than threshold are
be equal to just selective induction, displayed to the user.

The set of constructive induction operators can dci_numeric <=
be organized hierarchically as shown in Figure [Numeric-attributes.present = Yes]&
4. This hierarchical organization captures the [Attribute_value_noiselevel = 0%]
relationships between CI operators and allows
selection rules to provide better guidance when dci_boolean t=
confronted with new domains. The current [Numeric-attributes-present = No]&
MCI system has capabilities for both types of [Nominaal~tributes-present = NoW&
constructors, logical attribute and logical [Irrelevant attributes.present = No]
instance destructors, and statistical attribute-
value removal. dci nominal 4

[Nominal attributes..present = Yes] &
The system was bootstrapped by providing [Attribute_value_noise_level =0%]

meta-examples describing datasets for which

appropriate representation space modifications hci rule.grouping4=
were already determined. This was done to h-ir u tegrouping¢=
confirm if the resulting meta-rules agree with [Attribute_value_noise_level = 0%]
experience. Descriptions for seven domains [Irrelevant atributespresent = Yes]
were provided including: two monk's problems
(Thrun, et aL, 1991). Congressional voting rule_based_instance_removal e=
records from 1984 (Bloedorn and Michalski, [Overprecision = Yes] &
1991), texture data (Pachowicz, et al., 1992), [Attributevalue_noiselevel =5%]

artificially generated DNF4 functions and
multiplexer 11 (Wnek, 1993) and finally wind- statbasedattribute_value_removal 4
bracing data from a civil engineering domain [Overprecision = Yes] &
(Arciszewski et al., 1992). [Attribute_valuenoise_level = 5%]

The appropriate RSM operator for each domain Table 2. Examples of learned meta-rules for
was found experimentally. These meta- representation space modification

examples were given to AQ14 classified by CI
method so that strategy selection rules could be
learned. Table 2 shows the learned After the representation space modification has
representation space modification operator been selected, the training data are reformulated
selection rules. Default rules are used in the in this space. The generation module has a
case of RSM operators that do not yet have number of fundamental CI operators with
meta-examples in the knowledge base. which it can modify the primary and secondary

The degree of match between an example and a training set. These operators include those used

rule is calculated using the method of ATEST by a number of previous systems (Bloedorn

(Reinke, 1984). The degree of match for all and Michalski, 1991), (Pachowicz, et al.,
mecta-rules matching to the dataset 1992), (Wnek and Michalski, 1993). Some ofthese fundamental operators have been reported
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by others, notably Rendell and Seshu (1990). important for empirical induction methods that
The following MCI operators are equivalent to allow only small number of discrete attribute
the terms used in Rendell: attribute removal values such as ID3 (Quinlan, 1983) and AQ
(projection), attribute-value removal (Michalski, 1983a). In MCI, statistic-based
(puncturing), and hypothesis-driven attribute-value removal is performed by a chi-
constructive induction (superpositioning). square based method.

a. Attribute Removal c. Hypothesis-driven Cl

Attribute removal makes a selection of a set X'
of attributes from the original attribute set X. In Hypothesis-driven CI (HCI) is a method for

MCI, a logic-based attribute removal is constructing new attributes based on an

performed based on the quality of an attribute analysis of inductive hypotheses. Useful

(as described by the meta-attribute concepts in the rules can be extracted and used

"Irrelevantattributes.present"). The to define new attributes. These new attributes

irrelevancy of an attribute is calculated by are useful because explicitly express hidden

analyzing rules generated by the Decision Rule relationships in the data. This method of

Generation module. For each attribute, a sum is hypothesis analysis as a means of constructing

calculated of the total number of examples new attributes is detailed in a number of places

covered by a discriminant rule which includes including (Wnek, 1993; Wnek and Michalski,

that attribute. Attributes that are irrelevant will to appear 1993). Wnek and Michalski define a

be useful only to explain instances that a hierarchy of hypothesis patterns from the

distant from the majority of examples in the simplest (value-groupings) to the most complex

distribution. Thus, these attributes will have (rule-groupings). which is implemented in

low total-weight sums. Logic-based attribute AQ17-HCI. AQ17-HCI is used in MCI to

removal is performed in MCI by AQ17-HCI. perform rule-based constructions of attributes
based on value-groupings, condition groupings
and rule-groupings, and attribute removal (see

b. Attribute-value Modification section a).

Attribute-value modification can be either the d. Data-driven CI
addition, (concretion) of values to an existing
attribute domain, or the deletion (abstraction) of Data-driven (DCI) methods build new attributes
attribute values. Currently MCI implements based on an analysis of the training data. One
only abstraction, based on the chi-square such method is AQ17-DCI (Bloedorn and
correlation between an attribute-value interval Michalski, 1991). In AQ17-DCI new attributes
and the class. Using chi-square to quantize data are constructed based on a generate and test
was first proposed by Kerber (Kerber, 1992). method using generic domain-independent
Attribute value modification (AVM) selects a arithmetic and boolean operators. In addition to
set V' c V (where V is the domain of A) of simple binary application of arithmetic
allowable values for attribute A. AVM can be operators including +, -, *, and integer
used to reduce multi-valued nominal domains, division, there are multi-argument functions
or real-valued continuous data into useful such as maximum value, minimum value,
discrete, values. Discretization is especially average value, most-common value, least-
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common value, and #VarEQ(x) (a cardinality detection step, the resulting classification rules
function which counts the number of attributes must be evaluated. (Figure 1). Control is
in an instance that take the value x). Another returned to either the representation space
multi-argument operator is the boolean modification module, or the process stops
counting operator. This operator takes a vector dependent upon rule quality. Rule evaluation is
of m boolean-valued attributes (m>=2) and based on a number of criteria. As described in
counts the number of true values for a (Bergadano, et al., 1988) the quality of a
particular instance. This approach is able to concept description may be judged by three
capture m-of-n type concepts. Data-based criteria: accuracy, simplicity and cost. In their
logical construction in MCI is performed by approach, as in MCI, the user selects the
AQ17-DCI using the multi-argument functions relative importance of each of these criteria.
of #VarEQ(x), most-common, least-common,
boolean counting, and binary boolean The predictive accu, acy of a rule set is a
operators. Data-based arithmetic construction is measure of the ability of the rule set to correctly
performed by AQ17-DCI through maximum, classify examples that were previously unseen.
minimum, average, and +, -, * and integer In MCI predictive accuracy is tested using a
division, secondary training set. The secondary set is

selected from the data the learner has not yet
e. Instance Removal seen. Both primary and secondary data are not

used for testing. Rules learned from the
Instance removal (IR) methods detect and filternois, o miclasifid tainng eampes.Ile primary training set, but which perform well on
noisy, or misclassified training examples. The the secondary set, are also less likely to be
method used in MCI is a logic-based approach overfitted to the original data. Predictive
implemented in AQ-NT (Pachowicz, et al., acucyimesrdsthprengeo

1992). The IR operator removes instances from seconary i n exampescectly

the training data ff they are covered by 'light' classified.

disjuncts. Light disjuncts are those disjuncts in

the rule which cover only a small fraction of the Complexity of a ruleset is evaluated by
total number of instances in the class. Thus if counting the number of rules in the ruleset and
the ratio of covered instances to total instances the total number of conditions.
in a class is below some threshold the covered
instances are removed from consideration by Cost is a measure of the price of evaluating the
the training data. The relationship between the values of variables used in the description.
weight of learned rules and the plausible Each variable has an associated cost provided
prototypicality of examples was first described by the user. A parameter within the rule-
in the AQ15-TRUNC method (Michalski, learning program, AQ, can be used to control
1983b). Other work, based on calculating the the use of attributes in a description based on
statistical significance of individual instances is cost. For this reason cost is not included in the
done in (Holte, Acker and Porter, 1989) quality calculation presented here.

3.4 Rule Evaluation The final quality of the rule is evaluated
lexiographically. Rulesets are evaluated first

Once a CI operator has been selected and according to the accuracy criterion. If the
applied to the data, or as a part of the initial
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accuracy is within a user defined threshold of Given st of classified meta-examples, new
the goal accuracy, the ruleset is then further meta-rules can be learned or improved. Meta-
evaluated according to the complexity criterion, rules are generated by AQ14. The new meta-
If, the ruleset does not meet the minimum rules generalize the previous meta-examples
standard for accuracy it is rejected and no Meta-rules will now be capable of classifying
further processing is done. The lexiographic unseen databases according their suitability to
evaluation permits the user to set a constraint representation space modification. Examples of
on the minimum allowable accuracy. learned meta-rules are presented in Table 2.

3.5 Storing Experience of Operator 4. Experiments
Selection: Meta-examples

The MCI method was tested in an artificial

Each time a strategy is selected, and evaluated problem, an extension of the difficult second
against the secondary training examples data, monk's problem in which both
the results of the modification must be stored. misclassification noise and irrelevant attributes

If the application resulted in an improvement in are added. This problem, "Noisy and Irrelevant
rule quality, the meta-example characterizing Monk2" (NIM2), extends the difficulty of the
the dataset is inserted into the knowledge base second Monk's problem, by including 5%
under the class representing RSM operator random misclassification noise (9 training
which made the useful modification of the examples) and 7 irrelevant, randomly generated
representation space. If the quality remained attributes to the original set of 6. The goal
constant or declined, the user determines if the concept of the NIM2 problem, like the original
meta-example should be stored. The problem monk 2, is: "exactly two of the 6 attributes take
of learning meta-rules which not only link a their first value". In the monk 2 problem, dci-
dataset to an operator, but also make the nominal attribute construction modified the
selection in the context of previous selections is training data by adding a new attribute which
discussed in section 6. represented the number of values which take

their first value. This modification allowed AQ

Problem Method Accuracy Complexity
(Exact match) #Rules #Conds

Noisy Monk2 AQ14 (No data modifications) 47.2 % 37 327
(5% noise) AQ14 46.8% 43 236

#Classes=2 (with stat. attrib. value removal)
AQ17-HCI (Rule-based attribute 42.1% 13 55

#Attributes=13 construction and removal) 42.1% 13 55
AQ-NT 43.1% 19 125

AVD Size=3 (Rule-based instance removal)
AQ17-DCI (Data-driven 81.5 % 17 122
attribute construction) 122

MCI 90.2% 8 23

AVD - "attribute value domain"
Table 3. A performance comparison of the MCI method with several single strategy methods.
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to find the goal concept resulting in rules which selection ceased when dci-nominal was selected
perfectly stated the goal concept. AQ17-HCI again, and no new attributes were constructed.
also solved this problem by constructing new The combination of rule-based instance
attributes based on "xor-rule-patterns" (Wnek, removal (AQ-NT), Data-driven CI (dci-
1993). nominal) and Hypothesis driven CI and

attribute removal, produced a ruleset which has
The NIM2 problem, however, is more significantly fewer total rules (8 vs. 17),
difficult. For this problem, dci-nominal significantly shorter rules (23 vs. 122 total
construction builds the same attribute, but the conditions) and which are better performing
goal concept has been disrupted by (90% vs. 81%) than the next best single
misclassified examples. This results in fairly strategy constructive induction method of
accurate, but complex rules (81% predictive AQ17-DCI. In table 4, MCI is compared to
accuracy, 17 ruies). AQ14 which has not methods for data

modification, the results of AQ14 after
The MCI method was also applied to the processing the data with a chi-square based
problem. The detection step was performed attribute value removal method, AQ17-HCI,
with AQ14 generating 37 rules with a AQ-NT and AQ17-DCI.
predictive accuracy of 47%. When presented
with NIM2, MCI first invoked rule-based The problem of determining the context of
instance removal. Using AQ-NT 5% of the operator selection decisions is a matter of future
training examples were removed, and new work. It is interesting to note that when
rules were learned. There were 19 new rules different meta-rules are used (characteristic vs.
with an accuracy of 43%. MCI next invoked discriminant), the MCI method selects only dci-
dci-nominal. dci-nominal constructed a new nominal construction and then HCI. The
attributed representing the number of attributes resulting ruleset is still superior, in predictive
which take their first value. With this new accuracy to any single strategy method, but is
attribute, AQ was able to generate 12 rules with more complex (88.2% accuracy, 17 rules, 57
an accuracy of 86%. When the operator conditions).
selection module was invoked again, the meta-
rule for dci-nominal construction continued to 5. Summary
have the greatest match to the meta-example
describing the dataset. When dci-nominal was This paper presented a methodology of
invoked again, no new attributes were multistrategy constructive induction that
constructed-no representation space integrates two inferential learning strategies
modification was made-so the next best -empirical induction and deduction, and two
method, HCI was selected by the user. computational methods- -data-driven and

hypothesis-driven. Empirical induction was
In this third representation modification, HCI pormedrin ERlGratindule, an

adde tw ne attibues nd dletd sven performed in the Rule Generation module, and
added two new attributes and deleted seven in the search for appropriate Representation
features x2, x3, x6, x7, x8, xl0 and x13. Space Modifications (the double search of
When AQ was invoked on the transformed constructive induction). Deduction was used in
database 8 rules with only 23 conditions were the application of learned meta-rules to the
generated with an accuracy of 90%. MCI characterization of incoming datasets in order to
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select an appropriate representation space operators before this process can be completely
modification. MCI includes "constructor" and automated.
"destructor" modifiers. Modifier selection is
based on meta-rules learned from the results of Constructive induction is a knowledge
past applications of modifiers. intensive learning process. Further research

should provide even more advanced capabilites
The MCI approach was tested on a problem, for introducing and employing domain
the NIM2, characterized by misclassification knowledge to guide constructive induction
noise and irrelevant attributes. The MCI (Ragavan and Rendell, 1991). For example,
method produced rules which surpassed not there should be a facility for a user to indicate
only traditional selective induction learning (no different preferences for various types of
representational modifications), but also single constructive induction operators. Also, it
strategy methods in terms of the quality of rules should be easy to the user to give advice as to
produced. The quality of the resulting ruleset the use of some new type of operators.
was superior both in terms of predictive
accuracy on the testing examples, and This raises a general issue of how to include
complexity. within a constructive induction system

sophisticated knowledge representation
6. Future Work capabilties. Consequently, there is a need for

developing a general method for what type of
One important area of improvement of the knowledge should be represented that might be
current method is the determination of a good useful for creating a more adequate knowledge
criterion when to stop applying representation representation, and how it should be used.
space modification (RSM) operators. In
general, rule quality changes when AQ17-MCI uses rule-based knowledge
representation space modifications are made. representation system. An interesting issue is to
Currently, RSM operator selection, application investigate how various ideas and operators
and evaluation is repeated until the user is implemented in AQ17-MCI could be employed
satisfied with the current ruleset quality. But ff in learning systems using different knowledge
the user is not satisfied, and the change in the representation, e.g., decision tress, semantic
rule quality has been negative, the question network, neural nets, etc. To employ any type
arises as to whether the system should not of modification operator withing another
recommend to the user some new ways of representation language will need to deal with
continuing the search process. the problems already addressed here, such as

detection and reduction of the overprecision of
Such a decision should be based on a new type data, noise in the training data, or low quality
of meta-knowledge that keeps track of which data (e.g., many irrelevant attributes). It is
RSM operators have been tried so far, and believed that the same cues used to select
which have not. The meta-attribute set must transformations relevant to a rule-based
capture this knowledge, and the matching representation will be useful for other
algorithm must support, a more sophisticated representation languages.
concept of context and the sequence of RSM
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Abstract addition to these practical successes, several
empirical studies have concluded that neu-

A distinct advantage of symbolic learning al- ral networks provide performance compara-
gorithms over artificial neural networks is ble to, and in some cases, better than com-
that typically the concept representations mon symbolic learning algorithms (Fisher
they form are more easily understood by hu- & McKusick, 1989; Mooney et al., 1989;
mans. A multistrategy approach to under- Weiss & Kapouleas, 1989). A distinct advan-
standing the representations formed by neu- tage of symbolic learning algorithms, how-
ral networks is to extract symbolic rules from ever, is that the concept representations
trained networks. In this paper we describe they form are usually more easily understood
and investigate an approach for extracting by humans than the representations formed
rules from networks that uses the NOFM ex- by neural networks. In this paper we de-
traction algorithm and the network training scribe and investigate a multistrategy ap-
method of soft weight-sharing. The NOFM proach to inductive learning that involves ex-
algorithm had previously been successfully tracting symbolic rules from trained neural
applied only to knowledge-based neural net- networks. Our approach uses the NOFM al-
works. Our experiments demonstrate that gorithm (Towell & Shavlik, 1991) to extract
our extracted rules generalize better than rules from networks that have been trained
rules learned using the C4.5 algorithm. In using Nowlan and Hinton's method (1992)
addition to being accurate, our extracted of soft weight-sharing. We present experi-
rules are also reasonably comprehensible. ments that demonstrate that, for two diffi-

Keywords: artificial neural networks, cult learning tasks, our method learns rules

rule extraction, empirical comparison that are more accurate than rules induced by
Quinlan's C4.5 algorithm (1993). Further-

1 Introduction more, the rules that are extracted from our
trained networks are comparable to rules in-

Artificial neural networks (ANNs) have been duced by C4.5 in terms of complexity and
successfully applied to real-world problems understandability.
as varied as steering a motor vehicle (Pomer-
leau, 1991) and learning to pronounce En- Towell and Shavlik (1991) demonstrated
glish text (Sejnowski & Rosenberg, 1987). In that concise and accurate symbolic rules
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can be extracted from knowledge-based neu- section 5 presents experimental results for
ral networks. In a knowledge-based net- these domains. The final section provides
work, the topology and initial weights of conclusions and a discussion of future work.
the network are specified by a domain the-
ory consisting of symbolic inference rules' 2 Extracting Rules From Neu-
Since these networks initially encode sym-
bolic rules, training is more a process of ral Networks
rule refinement than of tabula rasa learning. An important criterion by which a ma-
This paper describes work that involves us- chine learning algorithm should be judged is
ing Towell and Shavlik's NorM algorithming owel an Shvliks NFM agorthm the comprehensibility of the representations
to extract rules from ANNs which have not tome hensibility of at represetao
been initialized by a domain theory. Be- formed by the algorithm. That is, does the
cause the NOFM algorithm assumes that algorithm encode the information it learns in
the weights in a trained network are clus- such a way that it may be inspected and un-

tered, we modify the training process to en- derstood by humans? There are at least five
reasons why this is an important criterion.

courage such a network state after training.
Previously, Towell (1991) reported that the * Validation. If the designers and end-
NOFM algorithm failed to extract accurate users of a learning system are to be con-
rules from conventional networks. fident in the performance of the system,

We use two problem domains to investi- then they must understand how it ar-
gate the effectiveness of our approach. The rives at its decisions.
first domain involves recognizing promoters
in DNA (Towell et al., 1990). Promoters are e Discovery. Learning algorithms may
short nucleotide sequences that occurs be- discover salient features in the input
fore genes and serve as binding sites for the data whose importance was not previ-
protein RNA polymerase during gene tran- ously recognized. If the representations
scription. Identifying promoters is an im- formed by the algorithm are comprehen-
portant step in locating genes in DNA se- sible, then these discoveries can be made
quences. The second problem domain that accessible to human review.
we investigate is a simplified version of the
NETTALK task of mapping English text to unerplanato.I the reprsnation ar
its pronunciation (Sejnowski & Rosenberg, understandable, then an explanation of
1987). Our scaled-down version of this do- the classification made on a particular
main involves learning only the stresses (but case can be garnered.
not the phonemes) from a corpus of the 1000 Improving generalization. The feature
most common English words. representation used for an inductive

The organization of this paper is as fol- learning task can have a significant
lows: the next section discusses the problem impact on generalization performance.
of extracting rules from neural networks and Understanding learned concept repre-
describes the NoFM algorithm that is em- sentations may facilitate the design of a
ployed in our approach. Section 3 describes better feature representation for a given
soft weight-sharing and how we use for the problem.
task of rule extraction. Section 4 describes
two problem domains that we use to inves- 9 Refinement. Some researchers use in-
tigate the effectiveness of our approach, and ductive learning systems to refine an
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approximately-correct domain theory
(Ourston & Mooney, 1990; Towell et al.,
1990). When a learning system is used
in this way, it is important to under- "

stand the changes to the knowledge base
that have been imparted during the al a2
training process.

2.1 Rule Extraction Methods c a3-
c :aS.

A significant limitation of artificial neural c al, a2.
networks is that the concepts they learn c a2, a4.
are virtually impenetrable to human under- c :- al, a4.

standing because concepts are represented
by a large number of real-valued param- Figure 1: Extracteng rules from a unit in a -

eters: the weights and biases of the net- ral network. The extracted rules show which combina-

work. One approach to understanding the tions of antecedent units must be activated in order for

representations formed by a neural network the consequent unit's bias to be exceeded.

is to use scientific visualization techniques
(Wejchert & Tesauro, 1990). A second ap- search for minimal sets of antecedent units
proach, which is applicable to small feature that, when maximally active, cause the con-
spaces, involves a combination of visualiza- sequent unit to become maximally active.
tion and rule extraction (Wnek & Michalski, The process of searching for rules is problem-
1991). The approach on which we focus in atic because of the combinatorics involved.
this paper is the extraction of symbolic rules The complexity of this search, in the worst
from networks of arbitrary size (Fu, 1991; case, is 0( 2 n) where n is the number of con-
McMillan et al., 1991; Saito & Nakano, nections impinging on the consequent unit.
1988). Moreover, these algorithms tend to extract

The underlying premise of these rule- a large number of rules, even for networks of
extraction methods is that each hidden and moderate complexity.
output unit in the network can be thought of
as implementing a symbolic rule. The con- 2.2 The NofM Algorithm
cept associated with each unit is the conse-
quent of the rule, and certain subsets of the Towell and Shavlik previously described an
units that feed into this unit represent the algorithm, called NoFM, that avoids the
antecedents of the rule. As shown in Fig- combinatoric and rule-set size problems of

ure 1, the process of rule extraction involves other rule-extraction algorithms by cluster-
finding the sufficient conditions for each con- ing weights into equivalence classes. They
sequent. In order to find such sets of suffi- have demonstrated that their NoFM algo-
cient conditions, rule-extraction methods as- rithm is able to extract accurate and con-

sume that, after training, hidden and out- cise rules from trained knowledge-based neu-
put units tend to be either maximally active ral networks; that is, networks for which the
(i.e., have activation near one), or inactive topology and initial weights have been spec-
(i.e., have activation near zero). Given this ified by an approximately-correct domain
assumption, a rule-extraction algorithm can theory. The algorithm is called NoFM be-
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cause it explicitly searches for rules of the Cba-4.5
form:
If (N of the M antecedents are true) then ... "" ""..

The NoFM algorithm comprises six steps: 7.1 7.1 2- -

1. Clustering. The weights impinging
on each hidden and output unit of the
trained network are grouped into clus- nIle exracton

ters. Initially, each weight is treated as -
a cluster. The two nearest clusters are c :- a3.
successively merged until no pair of clus- I c a5.

ters is closer than a preselected distance. c 2 of _ _ _

Additionally, weights with small magni- Figure 2: Extracting rules using tf 1 -:M
tudes are pruned from the network at method. The dotted ovals illustrate how tt ats

this step. have been grouped into clusters. Each weight h1 &een

2. Averaging. The magnitude of each set to the average value of its cluster.

weight is set to the average value of the
weights in its cluster. Figure 2 illustrates the application of the

3. Eliminating. Weight clusters that are NoFM to the unit shown in Figure 1. The

not needed in order to correctly acti- weights have been grouped into two clusters,

vate a unit are eliminated. Two elim- and each weight has been set to the average

ination procedures are applied: one al- value of its cluster. One of the extracted

gorithmic and one heuristic. The al- rules is expressed in the NoFM format; the

gorithmic elimination procedure iden- other two rules are trivial NoFM cases (1 of

tifies clusters that cannot have an ef- 1). The eliminating and optimizing steps are

fect on whether or not a unit's bias not depicted in this example.

is exceeded. The heuristic elimination
step eliminates clusters that do not have 3 Extending NofM With Soft
such an effect for any of the training ex-
amples. Weight-Sharing

4. Optimizing. The unit biases are re- An underlying assumption of the NoFM
trained to adapt the network to the method is that the distribution of weights
changes that been imparted by the pre- in the network will be conducive to forming
vious steps. a small number of clusters for each hidden
.Extracting. Each hidden and out- and output unit. For knowledge-based neu-5. rarcin.Ec hde adot

put unit is translated into a rule with ral networks, this is a reasonable assumption

weighted antecedents such that the con- since the weights are clustered at least before

sequent is true if the sum of the training. For example, using the KBANN

weighted antecedents exceeds the bias. algorithm for mapping symbolic rules into
a knowledge-based network (Towell et al.,

6. Simplifying. Weights and thresholds 1990), the weights that are specified by the
are eliminated and rules are expressed domain theory have values of approximately
in the NOFM format. 4 and -4, whereas the rest of the weights
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have values near 0. Experimental evidence ing proportion of the jth Gaussian. A mix-
indicates that the weights tend to be fairly ing proportion is a weight that determines
well clustered after training as well (Towell, the influence of a particular Gaussian. The
1991). mixing proportions are constrained to sum

The applicability of the NoFM method to 1.
might seem to be limited to knowledge-based The partial derivative of the cost function
networks since in conventional neural net- with respect to each weight is the sum of the
works there is usually not a bias that leads usual error derivative plus a term due to the
weight values to be clustered after training, complexity cost of the weight:
In fact, Towell (1991) reported that NoFM
did not extract small sets of accurate rules A = 5,E ( wi)
from conventional networks. However, the 'wi wJ2

approach that we explore in this paper does
not rely on the network weights being ini- Here ,, and are the mean and variance,

tially clustered, but instead encourages clus- respectively, of the jth Gaussian, and ri(wi)

tering during network training. We use a is the conditional probability that wi is being

method developed by Nowlan and Hinton modelled by the jth Gaussian:

(1992), termed soft weight-sharing, that en- 1rjpj(Wi)
courages weights to form clusters during the rj(wi) = E

training process. Although their method was
motivated by the desire for better general- Thus, the effect of each Gaussian is to pull
ization, we explore it here as a means for each weight toward the mean of the Gaus-
facilitating rule extraction. sian with a force proportional to the density

Soft weight-sharing uses a cost function of the Gaussian at the value of the weight.
that penalizes network complexity so that When weights are pulled tightly around the
during training, the network tries to find means of the Gaussians, the network is sim-
an optimal tradeoff between data-misfit (i.e., ilar to one that has fewer free parameters
the error rate on the training examples) and than connections (ordinary weight sharing).
complexity. The complexity term in soft The parameters of each Gaussian - the mean
weight-sharing models the distribution of yj, standard deviation aj, and mixing pro-
weights in the network as a mixture of multi- portion rj - are learned simultaneously with
ple Gaussians. A set of weights is considered the weights during training.
to be simple if the weights have high prob- Our approach to rule extraction involves
ability densities under the mixture model. training networks using a variant of soft
Specifically, the cost function in soft weight weight-sharing and then applying the NoFM
sharing is the following: algorithm to the trained networks. Al-

though the NOFM method was designed
Cfor knowledge-based neural networks, we

C = AE -. j log [ ripi(wi)] hypothesized that it could be successfully

applied to conventional networks, provided
where E is the data-misfit term, A is a pa- that the weights of the networks were
rameter used to balance the tradeoff between grouped into clusters during training.
data misfit and complexity, wi is a weight in Whereas the NoFM algorithm works best
the network, pj(w1 ) is the density value of wi when the weights impinging on each unit
under the jth Gaussian, and 7ri is the mix- form clusters, soft weight-sharing tends to
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globally cluster network weights. Our imple- enth position from the right end of the win-
mentation of soft weight-sharing, however, dow. Thus the leftmost 50 window positions
assigns a local set of Gaussians to each unit. are labelled -50 to -1, and the rightmost
The complexity cost of a given weight is cal- seven are labelled 1 to 7.
culated with respect to only the Gaussians For the neural networks, a local repre-
associated with the unit to which the weight sentation is used for the promoter features.
connects. Thus, for each feature there are four input

units - one corresponding to each of the nu-
4 Data Sets cleotides. When the value of a feature is

known, the input unit corresponding to the

Our experiments address the hypothesis that value is given an activation of 1, and the

soft weight-sharing is able to cluster the other three units for the feature are given

network weights during training such that activations of 0. When a feature value is

NOFM is able to extract a small set of ac- unknown, all four input units are given acti-

curate rules. In order to evaluate the effec- vations of 0.25.
tiveness of our approach, we use two prob- Our simplified NETTALK data set consists

lem domains to compare the accuracy and of 5438 examples taken from the 1000 most

succinctness of our extracted rules against common English words. Each example has

rules induced by the C4.5 algorithm (Quin- seven features which represent the letters in

lan, 1993). Both problem domains involve the input window. Each feature can take

predicting a class given a fixed-length "win- on one of 27 values. There is a value cor-

dow" onto a string of interest. In the case responding to each letter of the alphabet,

of the promoter domain, the string is a DNA and a value to represent the absence of a

sequence, and in the NETTALK domain, the letter. Since each example is formed from

string is an English word (or part of one). only a single word, when the window over-

The promoter data set comprises 468 hangs a word, the overhanging window po-

examples1, half of which are positive exam- sitions are set to the "space" value. In the

ples (i.e., promoters). Each example has 57 original NETTALK domain, the task involved

features which represent the DNA sequence. predicting both a phoneme and a stress for

A single strand of DNA is a linear chain corn- each window position. In our experiments

posed from the four nucleotides represented we have simplified the problem so that the

by the letters A, C, G, T. Thus all of the fea- classifiers are trained only to predict a stress

tures for this problem are nominal features (out of five disjoint classes).
that can take on the values A, C, G, T, or un-
known. Each example is a member of one of
two classes, promoter or non-promoter. Re- 5 Experimental Results
call that a promoter occurs before a gene on
a DNA strand. The positive examples for In this section we evaluate our approach
this data set are aligned such that the gene rule a cn comparing the acce-
following each promoter begins in the sev- racy and comprehensibility of rules extracted

____________from neural networks and rules learned us-
1Note that this data set is larger than the one ing the C4.5 algorithm. The comprehensi-

that was used in (Towel et al., 1990) and is avail-
able by anonymous ftp from the UC-Irvine Repository bility of a set of rules is a difficult concept to
of Machine Learning Databases and Domain Theories measure. We simply measure the syntactic
(ftp.ics.uci.edu). The promoterset in the Irvine database cmplex oe rule setanu se tsy as
contains only 106 examples. complexity of the rule sets and use this as
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a proxy for complexity. Specifically, we con- Table 1: Generalization on the promoter data.

sider the number of rules and antecedents to
be measures of syntactic complexity. approach J% test set error

C4.5 decision trees 16.9
5.1 The Promoter Data Set rules 13.5

ANNs networks 7.9
For the promoter problem, we use a ten-fold ru s 1.1

cross-validation methodology2 to assess the

ability of our approach to extract accurate,
comprehensible rules from trained networks. Table 2: Rule-set sizes for the promoter data.
Our reported results represent averaged val-
ues for the ten runs. approach # rules # antecedents

The neural networks used for the promoter C4.5 23.2 47.3
domain have fully-connected hidden units in ANNs 8.2 119.6
a single layer. The number of hidden units
used in each network is determined by cross-
validation within the training set. That is, estimate of decision tree generalization for
for each training set, networks with 20, 25, this task. For each training set, we test
10, and no hidden units are trained, and confidence levels ranging from 5% to 95%
cross-validation is used to pick the network and separately select tree-pruning and rule-
that is to be trained on all of the data in pruning levels.
the training set. After the number of hid- Table 1 shows the test set error rates on
den units is selected for each network, a the promoter data set for the decision trees,
similar cross-validation procedure is used to rules extracted from the trees, neural net-
determine the A parameter for soft weight- works, and rules extracted from the net-
sharing. We use a conjugate-gradient learn- works. As can be seen in the table, neu-
ing algorithm to train the weights and the ral networks perform significantly better on
Gaussian parameters of the networks. this task than decision trees or the rules ex-

Decision trees are induced, and rules ex- tracted from them. Additionally, the perfor-
tracted from them, using Quinlan's C4.5 mance of the symbolic rules extracted from
algorithm (1993). Cross-validation within the neural networks is fairly close to the per-
each training set is used to determine the formance of the networks themselves, and
confidence levels for both tree pruning and better than the rules extracted from the de-
rule pruning. The confidence level se- cision trees. The difference in error rates be-
lected for tree pruning does not affect the tween the rules extracted from networks and
rule extraction results since the C4.5 rule- the C4.5 rules is significant at the 0.05 level
induction program operates on unpruned using a paired, 1-tailed t-test.
trees and performs its own pruning indepen- Table 2 shows the average number of
dently of the tree-induction program. How- rules and antecedents for the rules extracted
ever, we select a confidence level for tree from our networks and the rules induced by
pruning only so that we obtain an accurate C4.5. The rule sets extracted from the de-

__ _ _ cision trees contain more rules but fewer an-
2In ten-fold cross-validation, the available data is par- tecedents than the sets extracted from net-

titioned into ten sets. Classifiers are trained usin exam-
pies from nine of the sets and tested on examples from works. The additional complexity of the
the tenth set. This procedure is repeated ten times so
that each set is used as the testing set once. rules extracted from networks, however, re-
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suits in a significant gain in accuracy. More-over th ruls etraced rom etwrks ave Table 3: Rules extracted from a promoter net-o v e r , t h e r u le s e x t r a c t e d f r o m n e t w o r k s h a v e w r . T e p e i a e s r - h n r t r s t u f t e n m
only 14.6 antecedents per rule, so we believe work. The predicate iorethan returns true if the num-
that their complexity is within the bounds ber of true antecedents in the first set minus the nuth-of what biologists can readily understand. her of true antecedents in the second set is greater than

ofTwhatboleo3ishos an ea runersextraced. the supplied threshold. The notation 0-36 indicates the
Table 3 shows a set of rules extracted t

from one of the promoter networks. In ad- starting position of a given sequence; in this case the po-

dition to the NOFM-style rules, this rule set sition is 36 nucleotides before the start of a putative gene.

has been expressed using a predicate we call Dashes represent placeholders, so 10-36 '--AG----A')

more-than. The more-than predicate has has only three antecedents. The letter S is an ambiguity

the following form: code that biologists use to represent (C V G).

promoter :-hidden_2,
morethan(Pos.Set, Neg.Set) not (hidden-2),

not (hidden_4).

where N is an integer, and Pos.Set and promoter :-hidden_3,

NegSet are sets of positive and negated an- not (hiddenl1),not (hidden_.4).
tecedents respectively. The predicate re-

promoter :-turns true if the number of true antecedents hidden_2,hidden_3,
in PosSet minus the number of true an- not 2 of (hidden_l, hidden_4}.
tecedents in NegSet is greater than N. hidden_1 :-
This predicate provides a succinct way of s more-than( (C-40 'C ---- C-G-C-,0)-13 '-SG --- 1, -I',

expressing rules that have many negated ()-40 'AT---T--A. .,
antecedents. Without such a predicate, hidde$ - -

negated antecedents tend to result in a large not (({-40 .----- T----- . . ),
number of mostly-redundant rules. Since 3 more..than( (0-40 'C ---- C-G-C-C',

u0-13 '-SG---', 4-1'+'},
the knowledge-based networks to which the (0-40 A --- T------,,4)-13 '-T --- T'1)

NOFM algorithm was previously applied had hidd.n2

very few negated antecedents, this predicate S more-than( ({-40 'A---T-GA-A4)-13 '-T-'}),
was not previously necessary. ({-40 'c C---- C---,,

The rule set shown in Table 3 exhibits 4-13 '-SO'} ).

several interesting characteristics. First, the hidden_2 : -(/)-40 c...... T --... ') I,
rules abstract away a significant amount of 3 more.than( (0:-40 'A --- CT-G-AA,4)-13 '-T-'1},

the complexity of the network from which (0-40 'C--.-C-G--,0)-13 '-SG' I.
they are extracted. There are only ten rules 0-13 : )

and a total of 106 antecedents. Six of the 4 morenthan( :0-40 'A--- T-GA-AT',
hidden units and more than 2400 of the 4:-13 '-T-A-TI)(/)-40 --..... C-G-C-'I,

weights that were present in the neural net- 0-20 'G--G'
work are not represented in the rules. A sec- hidden-3

ond observation is that the rules focus on (4-40 .. T---- .},
2 sore..thanC (0-40 'A --- T-CA-AT',what are known by biologists to be the most o-13 '-T-A-T'},

significant regions of the DNA sequence. 0-20 'G--G-c,
In particular, a domain theory developed 4-13 'C5CG'} ).

by Michiel Noordewier (Towell et al., 1990) hidden_4 : -4 of (/)-44 ' G', 0-40 ' ---- AC-G-C',
identifies the -14 to -7 and the -37 to -31 re- 0-24 'A--C', 0-13 '-S]'}.
gions as containing the most important fea-
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tures of a promoter. These are termed the Table 4: Generalization on the NETrALK data.

contact regions. The rules extracted from all
of the hidden units specify antecedents pri- approach % test set error
marly in these areas. C4.5 decision trees 19.1

rules 20.1
5.2 The Nettalk Data Set ANNs networks 13.0

____rules 17.0
For the NETTALK domain, classifiers are

trained on half of the example set and tested
on the other half. Ten runs of this proce- Table 5: Rule-set sizes for the NET'AUx data..

dure are performed, and the reported results
represent averaged values. As with the pro- approach # rules # antecedents
moter domain, cross-validation is used to de- C4.5 233.5 466.5
termine the A parameter and the number of ANNs 17.5 661.9
hidden units for the networks, and the confi-
dence levels for pruning C4.5 trees and rules.Since the NETTrALK domain involves five the decision trees is significant at the 0.005

Sinc th NETALKdomin nvoles ive level using a paired, 1-tailed t-test.
classes, the rules extracted from trained net- le u s a aied aie nutest u
works are not necessarily mutually exclusive Table 5 shows the average number of rules
and exhaustive. In other words, a given in- The rulecets extracted ral net-put sequence may satisfy more than one of The rule sets extracted from the neural net-

works contain far fewer rules than the rules
the class rules, or alternatively, it may sat-
isfy none of the class rules. The C4.5 rule- generated from the decision trees, although
extraction method also faces this complica- the network rules have far more antecedents.
tion when it prunes antecedents and rules
from its rule set. C4.5 handles this problem 6 Conclusions
in two ways: (1) rules are ordered by class,
and the first rule to match a given instance We have demonstrated that small sets of
determines the predicted class; (2) a default accurate, reasonably concise symbolic rules
rule is used to classify instances that do not can be extracted from ordinary artificial neu-
satisfy any of the other rules. We employ a ral networks. Our approach to this prob-
similar policy in classifying instances using lem involves exploiting the effectiveness of
our network-extracted rules. The rules are the NoFM algorithm by encouraging weight
ordered according to the a priori probability clustering during training. For two difficult
of each class, and the default rule predicts problem domains, recognizing promoters in
the most probable class. DNA, and mapping English text to stress

Table 4 shows the test set error rates on patterns, our approach was able to induce
the NETTALK data set for the decision trees, rules that resulted in better generalization
rules extracted from the trees, neural net- than rules learned using the C4.5 symbolic
works, and rules extracted from the net- learning algorithm.
works. The results in this table indicate that There are a number of issues regarding
the neural networks and the rules extracted our approach that we plan to pursue in fur-
from them outperform C4.5 decision trees ther research. One such issue is adapting
and rules. The difference in error rates be- the approach so that it can extract concise
tween the rules extracted from networks and rule sets from networks that have learned
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distributed representations. In a distributed strated that it is able to extract accurate,
representation, each concept at the hidden- comprehensible rules from networks trained
unit level may be encoded by the activations on a difficult real-world problem. These
of many hidden units, and each unit may promising results indicate that the problem

play a part in representing many different of understanding representations learned by

concepts. Distributed representations tend artificial neural networks may be tractable.

to result in rule sets that are verbose and dif-
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Abstract recommendation to achieve a goal under cer-

tain conditions. Advice is considered to be

The problem of designing and refining task- operationalized when it is translated into

level strategies in an embedded multiagent stimulus-response rules in a language directly

setting is an important unsolved question. To usable by the agent. Operationalization gen-
address this problem, we have developed a erates seed rules for finer-grained

multistrategy system that combines two refinements by a GA.

learning methods: operationalization ofhigh-level advice provided by a human and The long term goal of the work proposed here
incremental refinemepro by a genetic algo- is to develop task-directed agents capable ofrithm. The first method generates seed rules acting, planning, and learning in worlds aboutfor finer-grained refinements by the genetic which they have incomplete information.algorfiner-gaitned Orefutinementry lgeanistem These agents refine factual knowledge of thealgorithm.° Our multistrategy learning system

is evaluated on two complex simulated world they inhabit, as well as strategic

domains as well as with a Nomad 200 robot. knowledge for achieving their tasks, by
interacting with the world. Agent knowledge

Key words: advice, operationalize, acquisition is very diffiult for the same rea-

genetic algorithms sons that knowledge acquisition for expert
systems is. It is preferable to assimilate high
level knowledge because the process of

1 Introduction entering low level domain-specific
knowledge for an agent is a costly, tedious,

The problem of designing and refining task- and error-prone process. The additional chal-
level strategies in an embedded multi-agent lenge for agent knowledge acquisition comes
setting is an important unsolved question. To from the fact that the agent must dynamically
address this problem, we have developed a update its knowledge through interactions
multistrategy learning system that combines with its environment.
two learning methods: operationalization of
high-level advice provided by a human, and There are two basic approaches to construct-
incremental refinement by a genetic algo- ing agents for dynamic environments. The
rithm (GA). We define advice as a first decomposes the design into stages: a
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parametric design followed by refinement of describe the inductive (GA) refinement stage
the parameter values using feedback from the and compare our multistrategy approach with
world in the context of the task. Several one that is purely inductive. Before we
refinement strategies have been studied in the present the details of the method, we charac-
literature: GAs (Odetayo and McGregor, terize the class of environments and tasks for
1989), neural-net learning (Clouse and which we have found this decomposition (of
Utgoff, 1992), statistical learning (Maes and an agent design into an initial parametric
Brooks, 1990), and reinforcement learning stage and subsequent refinement stage) to be
(Mahadevan and Connell, 1991). The effective.
second, more ambitious, approach (Grefen-
stette et al., 1990; Tesauro, 1992) is to * Environment characteristics: Complete
acquire the agent knowledge directly from models of the dynamics of the environment
example interactions with the environment, in the form of differential equations or
The success of this approach is tied to the difference equations, or discrete models
efficacy of the credit assignment procedures, like STRIPS operators, are unavailable.
and whether or not it is possible to obtain An analytical design that maps the percepts
good training runs with a knowledge- of an agent to its actions (e.g., using
impoverished agent. differential game theory or control theory)

in these domains is not possible without a
We have adopted the first approach. The complete model. Even if a model were
direction we pursue i,; to compile an initial available, standard methods for deriving
parametric agent using high-level strategic agents are extensional and involve explora-
knowledge (e.g., advice) input by the user, as tion of the entire state space. They fail
well as a body of general (not domain- because the domains considered in this
specific) spatial knowledge in the form of a paper have of the order of a 100 million
Spatial Kncwledge Base (SKB). The SKB states.
contains qualitative rules about movement in * Task characteristics: Task are sequential
space. Example rules in our SKB are "If decision problems: payoff is obtained at the
something is on my side, and I turn to the end of a sequence of actions and not after
other side, I will not be facing it" and "If I individual actions. Examples are pursuit-
move toward something it will get closer", evasion in a single or multi-pursuer setting
This SKB is portable because it is applicable and navigating in a world with moving obs-
to a variety of domains where qualitative spa- tacles. The tasks are typically multi-
tial knowledge is important. A similar quali- objective in nature: for instance, minimize
tative knowledge base was constructed by energy consumption while maximizing the
(Mitchell, 1987) for the task of pushing time till capture by the pursuer.
objects in a plane. Since the knowledge pro- * Agent characteristics: The agent has
vided to our agent will often be imperfect imperfect sensors. Imperfections occur in
(incomplete and incorrect), this knowledge is the form of noise, as well as incomplete-
refined by a GA. ness (all aspects of the state of the world

cannot be sensed by our agent, a problem
First we describe our deductive operationali- called perceptual aliasing in Whitehead
zation process and the nature of the parame- and Ballard, 1990). Stochastic differential
terization adopted for our agent. Then we game theory has methods for deriving
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agents with noisy sensors, but it requires incompleteness of the SKB will force us to
detailed models of the noise as well as a adopt more powerful operationalization
detailed model of the environment and methods.
agent dynamics.
The action set of the agents and the values We assume all the knowledge provided is
taken on by sensors are discrete and can be operationalized immediately; however, it
grouped into qualitative equivalence need not be applied immediately. We
classes. This is the basis for the design of precompile all high-level knowledge because
the parametric agent. A similar intuition the agent will apply it in a time-critical situa-
underlies the design of fuzzy controllers tion. The learning cost prior to execution is
that divide the space of sensor values into a not a concern, but the reaction time of the
small set of classes described by linguistic agent is critical. Therefore it is best to have
variables, all knowledge in a quickly usable (opera-

tional) form. Compiled rules are fully opera-
In such domains, human designers derive an tional, whereas advice and SKB rules have at
initial solution by hand and use numerical least some nonoperational elements. The
methods (typically very dependent on the ini- user specifies what is operational for the
tial solution) to refine their solution. Our ulti- agent.
mate objective is to automate the derivation
of good initial solutions by using general Compilation uses two stacks: a GoalStack
knowledge about the environment, task, and and an (operational condition) OpCondStack.
agent characteristics and thus provide a better Three types of knowledge are initially given
starting point for the refinement process. We to the compiler: facts, nonoperational rules
begin with the SKB and advice. (abbreviated nonop rules), and advice. A

user can provide any of the three. The SKB
2 Compiling Advice has only facts and nonop rules. The output

from compilation is a set of op rules directly
Our operationalization method compiles usable (i.e., operational) by the agent. Facts
high-level domain-specific knowledge (e.g., have the form:
advice) and spatial knowledge (SKB) into Predicate(X 1 ...V
low-level reactive rules directly usable by the Nonop rules have the form:
agent. The compilation performs deductive IF cond AND ... AND cond <AND action>
concretion (Michalski, 1991) because it THEN goal.
deductively converts abstract goals and other Anything in angle brackets is optional. The
knowledge into concrete actions. An impor- portion preceding the "THEN" is the rule
tant question is why we adopt a deductive antecedent, and the portion following the
procedure for operationalization of advice. "THEN" is the rule consequent. A nonop rule
At this time, we are able to achieve opera- consequent is a single goal. The syntax for a
tionalization without resorting to any form of goal is "function(X 1,... ,X,) = value" or
non-deductive inference. This is because for "predicate(X 1 ... ,X.)". Each Xi is an object
the domains studied in this paper, the SKB is (e.g., an agent). The syntax for a "cond"
complete enough to yield good parametric (condition) or "action" in the rule antecedent
designs with deductive inference alone. We is the same as for goals. Advice has the
expect that as we expand our experimental form:
studies to cover more domains, the
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<IF cond AND ... AND cond THEN> This algorithm takes advice and backchains
ACHI•VE goal. through the SKB and user-provided nonop
Although advice has a similar syntax to rules until an operational action is found.
nonop rules, its interpretation differs. Advice Once an operational action is found, it pops
recommends achieving the given "goal" back up the levels of recursion, attaching
under the given "conds". A nonop rule, on the conditions along the way, to form a new reac-
other hand, states that the given "goal" will tive agent op rule.
be achieved if the given "conds" (and
"action") occur. Compilation results in Let us examine a simple example of how this
stimulus-response op rules of the form: algorithm operates, as shown in Figures 2 and
IF cond AND ... AND cond THEN action. 3. Heading (X,Y) refers to the direction of
The conditions of an op rule are sensor values motion of Y relative to X, and bearing (XY)
detectable by the agent. The action can be refers to the direction of Y relative to X. Sup-
performed by the agent. Our compilation pose the advice is "IF speed(adversary) = low
algorithm is in Figure 1. THEN ACHIEVE heading(adversary, agent)

= not(head-on)" (i.e., avoid adversary). Fig-
Push advice on GoalStack: goal followed by con- ure 2 shows how SKB nonop rules match this
ditions. advice for backchaining, thereby creating an
Initialize OpCondStack to be empty and invoke "and" tree. Anything preceded by a "*" is
Compile(GoalStack,OpCondStack). operational.

Procedure Compile (GoalStack, OpCondStack)
IF GoalStack is not empty THEN Figure 3 shows this algorithm in operation.
g +- pop(GoalStack); Note that stacks grow downward. The algo-
CASE g: rithm begins by pushing the advice goal, fol-

1. g is an operational condition: lowed by the advice condition, on the Goal-
Push(g, OpCondStack); Stack. It then calls procedure Compile,
Compile(GoalStack, OpCondStack) which moves the advice condition to the

2. g matches a fact: OpCondStack because it is operational. The
Compile(GoalStack,OpCondStack) advice goal is not operational. In our exam-

3. g is nonoperational: ple, the advice goal can be unified with the
FOREACH nonop rule Ri in goal of SKB RULE1, which states "IF

knowledge base whose consequent beg ng(agent, adversary) = right AND
matches g DO
Push(antecedent(Ri), GoalStack); turn(agent) = left THEN heading(adversary,
Compile(GoalStack,OpCondStack)l agent) = not(head-on)". The condition and

4. g is an operational action action of RULEI are pushed on the Goal-
Form a new op rule from the contents Stack. Because the condition of RULE1 is
of OpCondStack and g; operational, it is moved to the OpCondStack.

Clear OpCondStack
ELSE Clear OpCondStack At this point, the action of RULE1 is at the

top of the GoalStack, and it is operational, so
FIG. 1. Algorithm for operationalizing advice. we can create an op rule. The conditions

from the OpCondStack are added to theSTo prevent cycles, the last nonop rule used in step 3 is

marked as "used" so that it will not be used again. action. This creates an op rule that states "IF
speed(adversary) = low AND bearing(agent,
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FIG. 2. Graph of example.

adversary) = right THEN turn(agent) = left". Next, we apply a conversion from qualitative
Both stacks are cleared. The algorithm con- to quantitative op rules. The rules are given
tinues similarly to generate a second op rule default quantitative ranges. For example, if
that states "IF speed(adversary) = low AND "speed" has two values, "slows/' and "fast", we
bearing(agent, adversary) = left THEN bisect the range of all possible values into
turn(agent) =right" from SKB RULE2 (see two subranges. Then, we allow the system to
Figure 2). improve this initial choice of quantitative

CXWatwk OpConduc

1ding(adv~Agent)=notiead-u)

I I

QWtak p~xStck1

hedmwmv~getgaa)1) eft(dv-_o

*t~g)1f speed(adv)=low ftwm(agewt=right *speed(sdv)=low

*baafng(agernt.dv)=fight *bearing(&genItAdv)Idctj

FIG. 3. Example of the compilation algorithm.
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ranges by using a GA to refine the initial CPS assigns credit to individual rules based
ranges while interacting with the environ- on feedback from the critic. At the end of
ment. each episode, all rules that suggested actions

taken during this episode have their strengths
3 Executing and Refining Advice incrementally adjusted to reflect the current

payoff. Over time, rule strengths reflect the
The system we use to refine and apply the OP degree of usefulness of the rules.
rules derived from our compiled advice is the
SAMUEL reactive planner (Grefenstette SAMUEL's learning module is a genetic
et al., 1990). We have chosen SAMUEL algorithm. GAs are motivated by simplified
because this system has already proven to be models of heredity and evolution in the field
highly effective for refining rules on complex of population genetics (Holland, 1975). GAs
domains (Grefenstette et al., 1990; Schultz evolve a population of individuals over a
and Grefenstette, 1990). SAMUEL adopts sequence of generations. Each individual
the role of an agent in a multiagent environ- acts as an alternative solution to the problem
ment in which it senses and acts. This system at hand, and itsfitness (i.e., potential worth as
has two major components: a performance a solution) is regularly evaluated. During a
module and a learning module. Section 4.2 generation, individuals create offspring (new
explains how performance interleaves with individuals). The fitness of an individual pro-
learning in our experiments. babilistically determines how many offspring

it can have. Genetic operators, such as cross-
The performance module, called the Com- over and mutation, are applied to the
petitive Production System (CPS), interacts offspring. Crossover combines elements of
with a simulated or real world by reading two individuals to form new individuals;
sensors, setting effector values, and receiving mutation randomly alters elements of a single
payoff from a critic. CPS performs matching individual. In SAMUEL, an individual is a
and conflict resolution on the set of op rules. set of op rules. In addition to genetic opera-
This performance module follows the tors, this system also applies non-genetic
match/conflict-resolution/act cycle of tradi- knowledge refinement operators, such as
tional production systems. Time is divided "generalize" and "specialize", to op rules
into episodes: the choice of what constitutes within a rule set.
an episode is domain-specific. Episodes
begin with random initialization and end The interface between our compilation algo-
when a critic provides payoff. At each time rithm and the SAMUEL system is straightfor-
step within an episode, CPS selects an action ward. The output of our compilation algo-
using a probabilistic voting scheme based on rithm is a set of op rules for the SAMUEL
rule strengths. All rules that match (or par- agent. Because the op rules may be incom-
tially match - see Grefenstette et al., 1990) plete, a random rule is added to this rule set.
the current state bid to have their actions fire. The random rule recommends performing a
The actions of rules with higher strengths are random action under any conditions. This
more likely to fire. If the world is being rule set, along with CPS and the GA learning
simulated, then after an action fires, the world component for improving the rules, is our ini-
model is advanced one simulation step and tial agent.
sensor readings are updated.
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4 Evaluation GA component of SAMUEL with hand-
coded op rules in these domains. Their suc-

We have not yet analyzed the cost of o c cess has inspired the work described here.
compilation algorithm. The worst case cost Our objective is to automate their tedious
appears to be exponential, because the manual task, and the work described here is
STRIPS planning problem (which is P-space one step toward our goal.
complete) can be reduced to it. In the future,
we plan to investigate methods to reduce this Both problems are two-dimensional simula-
cost for complex realistic problems. Poten- tions of realistic tactical problems. However,
tial methods include: (1) attaching a likeli- our simulations include several features that
hood of occurrence onto advice, which make these two problems sufficiently com-
enables the agent to prioritize which advice plex to cause difficulties for more traditional
to compile first if time is limited, (2) tailoring control theoretic or game theoretic
the levels of generality and abstraction of the approaches (Grefenstette et al., 1990):
advice to suit the time available for compila-
tion (e.g., less abstract advice is closer to * A weak domain model. The learner has no
being operational and therefore requires less initial model of other agents or objects in
compilation time), and (3) generating a paral- the domain. Most control theoretic and
lel version of the algorithm. game theoretic models make worst case

assumptions about adversaries. This yields
We have evaluated our mulonstrater- poor designs in the worlds we consider
approach empirically. We focus on answer- because we have statistical rather than
ing the following questions: worst case adversaries.

e Incomplete state information. The sensors
effeWtil four adreaivi e o ation com pletd b are discrete, which causes a many-to-one
effective for a reactive agent on complex mapping and perceptual aliasing.
domains? t A large state space. The discretization of
* Will the coordination of multiple learning state space makes the learning problem
techniques lead to improved performance combinatorial. In the Evasion domain, for
over using any one learning method? In par- instance, over 25 million distinct feature
ticular, we want the GA to improve the suc- vectors are observed, each requiring one of
cess rate of the compiled advice, and the nine possible actions, giving a total of over
advice to improve the convergence rate of 225 million maximally specific condition-
the GA. An improved convergence rate is action pairs.
useful when learning time is limited. * Delayed payoff. The critic only provides
* Can we construct a portable SKB? payoff at the end of an episode. Therefore

a credit assignment scheme is required.
4.1 Domain characteristics 9 Noisy sensors. Gaussian noise is added to

all sensor readings. Noise consists of a
To address our questions, we have run expert- random draw from a normal distribution
ments on two complex problems: Evasion with mean 0.0 and standard deviation equal
and Navigation. Our choice of domains is to 5% of the legal range for the
motivated by the results of Schultz and Gre- corresponding sensor. The value thai
fenstette (1990), who have obtained large results is discretized according to the
performance improvements by initializing the
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defined granularity of the sensor. A 5% of advice seeding the GA with GA learning
noise level is sufficient to degrade alone (i.e., random seeding). Random seed-
SAMUEL's performance. ing produces an initially unbiased GA

search; advice initially biases the GA search
4.2 Experimental design - hopefully into favorable regions of the

search space.
Two sets of experiments are performed on
each of the two domains. Perception is In this second set of experiments, perfor-
noise-free for the first set, but noisy for the mance interleaves with GA refinement.
second. The primary purpose of the first set SAMUEL runs for 100 generations using a
is to address our question about the population size of 100 rule sets. Every 5 gen-
effectiveness of our advice compilation erations, the "best" (in terms of success rate)
method alone, without GA refinement. Facts, 10% of the current population are evaluated
nonop rules, advice, and the random rule are over 100 episodes to choose a single plan to
given the compiler and the output is a set of represent the population. This plan is
op rules. This rule set is given to SAMUEL's evaluated on 1000 randomly chosen episodes
CPS module and applied within the simulated and the average success is calculated. This
world model. The baseline performance with entire process is repeated 10 times and the
which these rules are compared is the random average success rate over all 10 trials is
rule alone. These experiments measure how found. The curves in our graphs plot these
the average (over 1000 episodes) success rate averages. For this set of experiments, statisti-
of the compiled rules compares with that of cal significance is measured using the two-
the baseline as problem complexity increases, sample i-test, with adjustments as required
Statistical significance of the differences whenever the F statistic indicates unequal
between the curves with and without advice variances.
are presented. Significance is measured
using the large-sample test for the differences We add sensor noise, as defined in Section
between two means. 4.1, for this second set of experiments

because GAs can learn robustly in the pres-
The primary purpose of the second set of ence of noise (Grefenstette et al., 1990).
experiments is to address our question about Two performance measures are used: the
the effectiveness of the multistrategy success rate and the convergence rate. The
approach (compilation followed by GA convergence rate is defined as the number of
refinement). Facts, nonop rules, and advice GA generations required to achieve and
are given to the compiler and the output is a maintain an n% success rate, where n is
set of op rules. This rule set, plus the random different for each of the two domains. The
rule, becomes every individual in SAMUEL's value of n is set empirically.
initial GA population, i.e., it seeds the GA
with initial knowledge. The baseline perfor- 4.3 Evaluation on the Evasion problem
mance with which these rules are compared
is SAMUEL initialized with every individual Our simulation of the Evasion problem is par-
equal to just the random rule. In either case, tially inspired by (Erikson and Zytkow,
GA learning evolves this initial population. 1988). This problem consists of an agent,
In other words, we compare the performance which is controlled by SAMUEL, that moves
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in a two-dimensional world with a single ADVICE
adversary pursuing the agent. The agent's IF speed(adversary) = high THEN ACHIEVE
objective is to avoid contact with the adver- decelemtes(adversary).
sary for a bounded length of time. Contact IF speed(adversary) = low THEN ACHIEVE
implies the agent is captured by the adver- avoids(agent, adversary).
sary. The problem is divided into episodes
that begin with the adversary approaching the We also include knowledge of the agent's
agent from a random direction. The adver- operational sensors and actions as facts.
sary initially travels faster than the agent, but
is less maneuverable (i.e., it has a greater Ten SKB nonop rules are used (they are
turning radius). Both the agent and the instantiations of the two rules described in
adversary gradually lose speed when English in the introduction of this paper).
maneuvering, but only the adversary's loss is Although room does not permit listing them
permanent. An episode ends when either the all, some examples are:
adversary captures the agent (failure) or the
the agent evades the adversary (success). At IF bearing(X,Y) = right AND turn(X) = left
the end of each episode, a critic provides full THEN heading(YX) = not(headcon).
payoff for successful evasion and partial IF bearing(X,Y) = left AND moving(X) AND
payoff otherwise, proportional to the amount turn(X) = left THEN range(XY) = close.
of time before the agent is captured. The
strengths of op rules that fired are updated in From our input and our SKB rules, the com-
proportion to the payoff. pilation method of Section 2 generates op

rules. The sensor values of these rules are
The agent has the following operational sen- translated from qualitative values to default
sors: time, last agent turning rate, adversary quantitative ranges. For example, "bearing =
speed, adversary range, adversary bearing, left" is translated into "bearing = [6..12]",
and adversary heading. The agent has one where the numbers correspond to a clock,
operational action: it can control its own e.g., 6 means "6 o'clock". Every new rule is
turning rate. For further detail, see (Grefen- given a strength of 1.0 (the maximum). The
stette et al., 1990). final op rule set includes rules such as:2

In our experiments, we provide the following IF speed(adversary) = [700..1000] AND
domain-specific knowledge: range(agent, adversary) = [0..750]

THEN turn(agent) = hard-left.
FACTS

Chasedby(agent, adversary). The total number of op rules generated from
Moving(agent). Moving(adversary). our advice is 16.

NONOP RULES
IF chased-by(X, Y) AND range(X, Y) = close We begin our experiments by addressing the
AND turn(X) = Z THEN turn(Y) = Z. first question, which concerns the
IF range(X, Y) = not(close) AND heading(Y,
X) = not(head-on) THEN avoids(X, Y). 2 To generae a few of these rules, we used a variant of our

cormpilation algorithm. We omined a description of this variation

IF turn(adversary) = hard THEN for th uke of lrity. See (Gordon and Subaý , 1993) for

decelerates(adversary). d -



227

effectiveness of our advice-taking method. The "safety" envelope is fixed at 100 (chosen
We do not use the GA. Problem diffiulty is arbitrarily) and noise is added to the sensors.
varied by adjusting a "safety" envelope For this domain, the convergence rate is the
around the agent. The "safety" envelope is number of GA generations required to main-
the distance at which the adversary can be tain a 60% success rate.
from the agent before the agent is considered
captured by the adversary. Figure 5 shows that in a small amount of time

(less than 10 generations), the GA provides a
Figure 4 shows how the performance (aver- substantial (50%) improvement in success
aged over 1000 episodes) of these op rules rate. However, the convergence rate with
compares with that of just the random rule. and without advice is the same. Furthermore,
All of the differences between the means are although prior to 50 generations the
statistically significant (using significance differences between the means are not statist-
level a = 0.05). From Figure 4 we see that ically significant (other than the initial boost
from difficulty levels 80 to 120, the agent is provided by the advice), after 50 generations
approximately twice as successful with the improvement without advice over advice
advice than without it. This is a 100% per- is significant (CL = 0.05). Therefore, this
formance advantage. Furthermore, for levels domain fails to demonstrate the superiority of
120 to 160, the agent is about four times more combining strategies. We conjecture that our
effective with advice. For levels 160 to 200, advice is not properly biasing the GA into the
the agent is an order of magnitude more most favorable regions of the search space.
effective with advice. We conclude that as
the diffiulty of this problem increases, the Note that these results illuminate the tight
advice becomes more helpful. These results coupling that exists between the two stra-
answer our first question: our advice compi- tegies in our multistrategy system. Con-
lation method is effective on this domain. sistently high performance depends not only

on successful compilation of advice. It also
We address the second question about multis- depends on how the advice initially biases the
trategy effectiveness by combining the com- GA. A ripe area for future research is to
piled advice with GA refinement. Figure 5 experimentally determine effective initializa-
shows the results of comparing the perfor- tion methods.
mance of the GA with and without advice.

100- - WITH ADVICE -00 100- -100

80 - -. NO ADVICE -80 80- -80
60- ,-60 AVERAGE 60-- .. 60
40- 40 %SUCCESS 40 - WITHADVICE 40
20- ,-..-20 20-". NO ADVICE -20

0 40 80 120 160 200 0 20 40 60 80 00

INCREASING PROBLEM DIFFICULTY -- > GA GENERATIONS

FIG. 4 Evasion domain. FIG. 5. Evasion domain with GA.
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4.4 Evaluation on the Navigation problem Evasion are again used for this domain,
which confirms the portability of our SKB,In the Navigation domain, our agent is again thus addressing the third question. A total of

controlled by SAMUEL in a two-dimensional 42 op rules are generated. 3

simulated world. The agent's objective is to

avoid obstacles and navigate to a stationary Again, we address the first question by using
target with which it must rendezvous before SAMUEL without the GA. The success rate
exhausting its fuel (implemented as a is averaged over 1000 episodes. Without
bounded length of time for motion). Each advice, the average success rate is 0%
episode begins with the agent centered in because this is a very difficult domain. Figure
front of a randomly generated field of obsa- 6 shows how we improve the success rate to
cles with a specified density. An episode as much as 90% by using our advice on this
ends with either a rendezvous at the target domain. At all but the last few points, the
location (success) or the exhaustion of the differences between the means are statisti-
agent's fuel or a collision with an obstacle cally significant (a = 0.05). When we vary
(failure). At the end of an episode, a critic the number of obstacles, performance follows
provides full payoff if the agent reaches the a different trend than for the Evasion domain.
target, and partial payoff otherwise, depend- By far the greatest benefit of the advice
ing on the agent's distance to the goal. occurs when there are few obstacles. Perfor-

mance is 10 times better when there is only
The agent has the following operational sen- oeosalfreape h datg

sors: time, the bearing of the target, the bear- one obstacle, for example. The advantage

ing and range of an obstacle, and the range of drops as the problem complexity increases.

the target. The agent has two operational After difficnlty level 80, advice no longer

actions: it can control its own turning rate

and its speed. For further detail, see Schultz Our experiments on both domains confirm
and Grefensette (1992). that our advice compiler can be effective,

however, they also indicate that the useful-
We provide the following domain-specific hwvr hyas niaeta h sfl
kowleprdge (in ith n folalowing domapectifl ness of advice may be restricted to a particu-
knowledge (in addition to a list of operational lar range of situations. Another learning task,
sensors and actions): which we are currently exploring, would be

FACTrS to identify this range and add additional con-

Moving(agent). ditions to the advice.
NONOP RULESI raUgLES nt eWe address the second question by compar-

IF range(X, Y)= not(close)AND heading(Y, ing the performance of the GA with and
X) = not(headLon) THEN avoids(X, Y). without advice. Noise is added. Figure 7

IFVICE rshows the results. All differences between
ACIE VE range(agent, ostarget) = close, the means are statistically significant (a =
ACHIEVE range(agent, target) = close. 0.05). Here, the number of obstacles is fixed

IF range(agent, obstacle) , close THEN at five (chosen arbitrarily). For this domain,ACHIEVE avoids(agent, obstacle).

ACHIEVE speed(agent) = high. 3 We wen able to decrease the number of op rules to 9 by
maldng one careful qualitative to quantitative mapping choice.

The same 10 SKB nonop rules used for
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FIG. 6. Navigation domain. FIG. 7. Navigation domain with GA.

the convergence rate is the number of GA noise poses a severe challenge.
generations required to maintain a 95% suc-
cess rate. The op rules are linked to a vendor-provided

interface that translates the language of the
Figure 7 shows that the addition of advice SAMUEL rules (e.g., "IF asonar4 [17..85]
yields an enormous performance advantage THEN SET turn -400") into joint velocity and
on this domain. Figure 7 also shows that servo motor commands. From high-level
given a moderate amount of time (10 genera- advice to avoid obstacles and rendezvous
tions), the GA provides a 10% increase in the with a goal point, our method has compiled
success rate. Furthermore, the addition of rules that enable the robot to succeed approx-
advice produces an 18-fold improvement in imately a third of the time in avoiding three
the convergence rate over using GAs alone, large boxes and reaching a goal point on the
Not only does advice improve the conver- other side of a room. The same SKB rules
gence rate, but it also improves the level of are used for compilation. With the random
convergence: after 80 generations, the GA rule alone, it is extremely unlikely to success-
with advice holds a 99% or above success fully complete this task. Our next step will
rate whereas after all 100 generations the GA be to refine these robot rules using GAs
without advice still cannot get above a 97% within a simulation.4

success rate. For this problem, the advice
appears to be biasing the GA into a very In conclusion, our multistrategy system offers
favorable region of the search space. two advantages. First, it provides an initial

"boost" from seeding with initial high-level
To further test our compilation method, we knowledge. Although this boost is insubstan-
have recompiled our Navigation advice into tial on Evasion, on Navigation we see an
op rules for a Nomad 200 mobile robot that is order of magnitude in improvement in the
equipped with very noisy sonar and infrared convergence rate. Second, the multistrategy
sensors and can adjust its turning rate and system provides the robustness and improve-
speed. The sensors are so noisy that the robot ment gained from GA refinement.
sometimes mistakes two boxes four feet apart
for a wall. The op rules that result from corn- 4 We Wish to use SAMUEL both to handle the noise and

because we had to mamaUly refine the qualitative to quanmive
pilation have not been refined by the GA to mappings omewbat - SAMUEL cM auamaonut ths.

develop a tolerance to noise; therefore, this
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Refinement yields a 10% increase in success 1988). A closely related system is Mitchell's
rate on Navigation and a 50% increase on (1990). This system combines EBL projec-
Evasion. tive planning with reactive planning. Our

method for compiling goals is similar to that
5 Related Work of EBL because it uses the notion of opera-

tionality. It differs because we do not assume
This work relates most strongly to the follow- that the advice will be applied immediately,
ing topics in machine learning: advice tak- and therefore our compilation method has no
ing, combining projective and reactive plan- current state on which to focus plan genera-
ning, methods for compiling high-level goals tion. All of the above-mentioned methods
into reactive rules, learning in fuzzy controll- create a projective plan to achieve a goal
ers, and multistrategy learning. This work from the current state. We precompile advice
also relates to research in differential game for multiple possible states.
theory. We discuss each in turn.

Because our method precompiles plans from
5.1 Machine learning possible states rather than from a current

state, it is very similar to the methods of
Advice taking has been considered as early Schoppers (1987) and Kaelbling (1988) for
as 1958 (McCarthy) and later by Mostow compiling high-level goals into low-level
(1983) and others. To date, research on reactive rules. Our method differs from those
assimilating advice in embedded agents has of Schoppers and Kaelbling because it
been limited but encouragi-ig. Previous includes the EBL notion of operationality.
research has focused mainly on providing Also unlike Schoppers and Kaelbling, we use
low-level knowledge. For example, Laird a refinement method following compilation.
et al. (1990) and Clouse and Utgoff (1992)
have had good success providing agents with Considerable prior work has focused on
information about which action to take. knowledge refinement. Others have used
Chapman (1990) gives his agent high-level GAs to refine qualitative to quantitative map-
advice. Our advice taker differs from pings. For example, Karr (1991) uses GAs to
Chapman's because it can operationalize select fuzzy membership functions for a
advice long before the advice is applied and fuzzy controller. Lin (1991), Mahadevan and
because it refines the advice with a GA. Connell (1991), and Singh (1991) initialize
Most important of all, our advice taking their systems with modular agent architec-
method is unique because it involves a mul- tures then refine them with reinforcement
tistrategy approach that couples a learning. Lin trains a robot by giving it
knowledge-intensive deductive precompila- advice in the form of a sequence of desired
tion phase with an empirical inductive actions. Mahadevan and Connell initialize
refinement phase. their reinforcement learner with a

prespecified subsumption architecture, and
We assume that high-level knowledge is Singh guides his reinforcement learner by
operationalized but not applied immediately, giving it abstract actions to decompose.
Methods for operationalizing advice that will
be applied immediately include STRIPS-like One of the most similar approaches to ours is
planners (Nilsson, 1980) and explanation- that of Towell and Shavlik (1991). They also
based learning (EBL) planners (e.g., Segre,
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couple rule-based input with a refinement for this is (Basar and Olsder, 1982). The
method; however, their refinement method is focus of work in differential game theory is to
neural networks. This multistrategy system identify conditions under which optimal stra-
converts rules into a network topology. The tegies for the evader can be derived. This
content of each rule is preserved; therefore, assumes complete knowledge of the dynam-
the transformation is syntactic. Our multis- ics of the evader and pursuer, both of which
trategy system, on the other hand, focuses are unavailable to us. The theory would be
primarily on semantic transformations that more useful to us if it had a qualitative coun-
use qualitative knowledge about movements terpart which allowed us to determine the
in space to convert abstract goals into con- existence of solutions to the evader's problem,
crete actions. The deductive compilation from partial knowledge of the evader and
scheme (but not the refinement) is in common pursuer's dynamics.
with Mitchell's (1987) derivation of a stra-
tegy for pushing objects in a tray using a 6 Discussion
qualitative theory of the process.

We have presented a novel multistrategy

5.2 Differential game theory learning method for operationalizing and
refining high-level advice into low-level rules

Differential game theory is a branch of to be used by a reactive agent. Operationali-
mathematical optimal control theory. It zation uses a portable SKB. An implementa-
assumes that the behavior of the controlled tion of this method has been tested on two
system can be modeled as a system of ordi- complex domains and a Nomad 200 robot.
nary differential equations (ODEs). The eva-
sion problem considered in this paper is a We have learned the following lessons:
typical example of a differential game. In (1) Our advice compiler can be effective on
particular, the problem is two-person zero- complex domains, and it will be important to
sum differential game with a constant termi- identify the regions of greatest effectiveness
nal time. Both the pursuer and the evader for advice, (2) A portable SKB appears feasi-
move in a bounded rectangle in two dimen- ble, and (3) Coordinating a deductive learn-
sions. The evader has to avoid getting to ing strategy (advice compilation) with an
within a certain distance of the pursuer for a inductive learning strategy (GA refinement)
certain length of time. In the minimax formu- can lead to a substantial performance
lation of the problem, the optimal strategy of improvement over either method alone. This
the evader is one that achieves its objective success, however, depends on the how the
under the least favorable assumptions on the advice biases the GA search. Future work
motion of the pursuer. will focus on identifying those characteristics

of advice that bias this search favorably. We
Differential games are formulated mathemati- will also focus on further addressing our
cally by specifying the motion equations of questions about performance using different
the pursuer and evader, the class of admissi- advice and alternative domains (e.g.,
ble controls for both systems (which Subramanian and Hunter, 1993).
identifies the way in which the pursuer and
evader can change their motions), and the Many other interesting directions are sug-
target or goal functional. A classic reference gested by our experimental results. At

present we do not consider the cost of
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incorporating advice. For larger scale prob- Ninth International Workshop on Machine
lems and situations where advice is provided Learning, 1992.
more frequently, the agent has to reason
about the costs and benefits of compiling Erickson, M. and J. Zytkow, Utilizing experi-
advice at a given point in time. Classical ence for improving the tactical manager. In
issues in trading off deliberation time for Proc. of the Fifth International Workshop on
action time are relevant here. We have Machine Learning, 1988.
chosen the GA method for refinement
because it was readily available to us. A com- Gordon, D. and D. Subramanian, Assimilat-
parison of neural network refinement ing advice in embedded agents. Unpublished
schemes and reinforcement learning schemes manuscript, 1993.
on the problems studied here will provide
valuable insights into the tradeoffs between Grefenstette, J., Ramsey, C., and A. Schultz,
various refinement strategies. We believe that Learning sequential decision rules using
multistrategy learning systems of the future simulation models and competition. Machine
must have a bank of operationalization and Learning, Volume 5, Number 4, 1990.
refinement methods at their disposal and have
fast methods for selecting them. We have Holland, J. Adaptation in Natural and
chosen a specific breakdown of effort Artificial Systems. University of Michigan
between the advice compilation and Press: Ann Arbor, 1975.
refinement phases. How this coordinates with
our choice of problem domains and Kaelbling, L., Goals as parallel program
refinement schemes is another question for specifications. In Proc. of the Seventh
future study. National Conference on Artificial Intelli-

gence, 1988.
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REGAL: An Integrated System for Learning Relations
Using Genetic Algorithms

A. Giordana and L. Saitta
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Corso Svizzera 185, 10149 Torino (Italy)

1982; Michalski, 1983). What distinguishes an
Abstract approach from another is the concept

Inducing concept descriptions from examples description language, the search method and

requires a large space of hypotheses to be the hypothesis selection -riterion.

explored. Genetic algorithms offer an Genetic algorithms offer a powerful, domain-
appealing alternative to traditional search independent search method: they have been
algorithms, because of their multi-point search first used in machine learning associated to the
strategy. In this paper, the new system "classifier" model (Holland, 1986), but,
REGAL is described: it uses genetic recently, they have also been used for concept
algorithms to learn first order logic concept induction, both in propositional calculus (De
descriptions. Morenver, it can be easily Jong & Spears, 1991; Vafaie & De Jong,
integrated with ,, ,uctive component, in 1991; Bala et al., 1991; Janikov, 1992) and in
or,' r to exploi, -. domain theory. Two first order logic (Giordana & Sale, 1992).
approaches to learning disjunctive concept From these first experiments, genetic
descriptions are presented: the first one is a algorithms proved to be an appealing
modification of the classical method of alternative for traditional search algorithms,
learning one disjunct at a time, whereas the because of their great exploration power,
second one is based on the idea of fitness useful to escape local minima, and their
sharing and tries to let subpopulations be suitability to exploit massive parallelism.
spontaneously formed, according to the theory
of the niches and species. The approaches This paper extends in many respects the
have been compared on an artificial domain, framework presented in (Giordana & Sale,

1992) in order to overcome some limitations
Key words: Learning relations, Genetic of that approach. In particular, the algorithm

algorithms GA-SMART, presented there, could only
learn concepts described in conjunctive

1. Introduction normal form, with no explicit negation. In the
present extension, multi-modal concepts,

Inducing concept descriptions from examples described in a more powerful first order logic
and background knowledge is a fundamental language, can be learned; in this language
machine learning task which can be negation of single atoms and negation of
formulated as a search problem (Mitchell, existentially quantified formulas may occur.
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representation language L in such a way that
The resulting inductive algorithm can be it becomes finite. The complexity of L is
easily integrated into a deductive/inductive defined through a language template A,
paradigm such as the one described by which represents the maximally complex
Bergadano and Giordana (1988). formula in L. Any other well formed formula

2. System Overview is obtained by deleting some literal from A.

The system REGAL, described in this paper, In GA-SMART, formulas in L were in

is an evolution of GA-SMART (Giordana & conjunctive normal form and negation was not

Sale, 1992) and adopts the same method of explicitly allowed. The richer language used

encoding first order logic (FOL) formulas into in REGAL allows the system to learn the same

bit strings. GA-SMART was a straightforward set of formulas as other systems do

evolution of the Simple Genetic Algorithm (Bergadano et al., 1988, 1991; Quinlan, 1990;

proposed by De Jong (1975). Pazzani & Kibler, 1992). Another important
advantage of REGAL is its suitability to be

Two alternative approaches are proposed in integrated with a deduction system and used to
the literature in order to encode the "problem refine, by induction, inconsistent concept
solutions" handled by genetic algorithms. The descriptions generated by EBG (Mitchell,
first one suggests a fixed-length bit string 1986) with an incomplete and/or inconsistent
representation. In this way, the genetic domain theory. Finally, a further improvement
algorithm architecture becomes problem introduced in REGAL is the use of a new kind
independent and a substantial amount of of sharing functions (Goldberg & Richardson,
investigation, available in the literature 1987), allowing the formation of sub-
(Goldberg, 1989a), can be exploited to design populations. Crowding was already used in
the genetic operators. The drawback is that it GA-SMART in order to learn many concepts
may be difficult to formulate a problem in at the same time. Here, the technique is
such a way that it can be. encoded using this modified in order to learn concept descriptions
representation. The second approach prefers expressed as disjunctions of Horn clauses.
an encoding scheme more closely fitting the
original formulation of the problem. The REGAL's learning strategy consists in

drawback is that the genetic operators must be searching for a maximum value of the fitness

designed ad hoc. For concept induction, a function f(p) associated to a formula p r= Le .
variable-length bit string representation has The algorithm starts with a set A(0) of
been used in (De Jong & Spears, 1991) and a formulas (individuals) randomly selected in L.
tree-like representation in (Janikov, 1991). In Each individual (pi r A(O) is associated to the
both cases, special genetic operators and corresponding fitness value f(q1). In order to
control strategies have been designed. explore new points in the search space, the

In GA-SMART and REGAL we chose the population A(O) is let evolving by applying
five operators: reproduction, m ati ng,

first approach and, hence, we devoted our

efforts to the proper encoding of FOL crossover, mutation and seeding. Let A(t) be

formulas into fixed-length bit strings. This has the solution population at time t, reproduction

been achieved by restricting the hypothesis consists in selecting a multiset A'(t) of
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individuals by sampling the elements of A(t) 3. Knowledge Representation and
with probability proportional to the Encoding
corresponding value of f. Then, in the mating
phase, the elements of A'(t) are randomly The language L, used by REGAL, is a first
paired, and each pair undergoes crossover order logic language containing conjunction,
with probability Pc, i.e., new offsprings are disjunction, negation, internal disjunction
created by recombining in some way the (Michalski, 1983) and existential and
information encoded in the parents. The new universal quantification. The building blocks
individuals partially or totally replace A(t), of the language are "internally disjunct"
obtaining a new generation A(t+1). Basically, atoms, such as, for instance:
the algorithm searches for the highest values
of f by statistically recombining tentative colour(x, yellow v green) (3.1)
solutions already discovered. As this strategy in which one of the arguments of a predicate is
could cause a loss of essential information, the a wichion of tants ofua prdct is
seeding operator (in addition to classical antion ofcosant For
mutation) is exploited to introduce new
information in the evolution process. colour(x, yellow) v colour(x, green) (3.2)

As mentioned in Section 1, the basic scheme but is more compact and readable.
described above has been made a little more
sophisticated, by incorporating the More in general, a predicate P of arity m is
mechanisms of crowding (De Jong, 1975) and specified using the following syntax:
of sharing functions (Goldberg & Richardson,
1987) in order to allow the formation of P(x1 ' x2 .... xm, [v1, v2. . Vn]) (3.3)
subpopulations. This turns out to be useful where the complex term [v1, v , vj

when many concepts are to be learned at the denotes the maximal internal disjunction, i.e.,
same time or when concepts have a the set of all the possible values the feature P
multimodal structure, which requires can assume on the tuple of variables < xI, x2,
disjuctive descriptions to be learned. ... I Any other disjunction inside P is

REGAL can work serially as well as in represented by a subset of the set [v1, v2 ......

parallel on a multi-processor according to the vn]. If the set [v1, v2 ..... , v.] does not exhaust

network model described by Goldberg the possible values of P, this set is completed

(1989b). A discussion of the parallel by means of the symbol "*". Then, in the

implementation on a 16 transputers network formula P(x1, x2, ... Xm, [v1, v2...., vn, *]) the

can be found in (Giordana & Sale, 1992). The symbol "* "denotes "no one of the values vI,

results presented in this paper, have been v2 ..... vn". In other words, "*" is an

obtained using a single processor workstation abbreviation for the expression -' V1 A -- V2 A

Sun 10. .... A -I vn. Therefore, the symbol "*" allows a
restricted form of negation to be implemented.
As an example, let us consider the predicate
colour(x, [yellow, green, blue, grey, *1. Then,
colour(x, [yellow, *]) is equivalent to
colour(x, yellow v [-, yellow A -, green A



237

blue A -, gray]) or, equivalently, to -, colour(x, Deleting a term from the internal disjunction
green) A -, colour(x, blue ) A -n colour(x, of a predicate occurring in V is a
grey). generalization operation, as it appears from

the equivalence of formulas (3.5) and (3.6):

Deleting a term from an internal disjunction is

a specialization operation. For instance 1 : -n3x [(P(x, [a v b]) v (Q(x, [e v f])] (3.5)

P(x, [vl]) k P(x, [v 1 , *1) k P(x, [vI, v2 , *]) Vx [-, P(x, a) A I P(x, b) A
-1 Q(x, a) A -- Q(x, b)] (3.6)

In particular, a predicate is said in maximally
specific form (msf ) when its internal Finally, the occurrence inside V of a predicatr

disjunction contains only one term, and in in mgf leads to an absurdum, owing to the

maximally general form (mgf), when its completeness hypothesis, whereas a predicate
internal disjunction contains all the possible with an empty internal disjunction leads to a
values, including "* ". We notice that, owing tautology.

to the completeness hypothesis, a predicate
with an empty internal disjunction has to be te owleg se acedebyiREGAL
considered illegal and one in mgf is consists of a flat set of concept descriptions in
tautologically true. disjunctive normal form:

A second form of negation, greatly increasing (Pi V V2 v .... v -4n -+ h (3.7)

the power of the language L, is the negation where h denotes a concept and the ýpi's (1 < i _<

of existentially quantified formulas. This form n) are conjuctions of predicates, possibly
of negation, widely used in logic containing, in turn, internal disjunctions. In
programming, can be learned by systems such the following we will describe the language
as ML-SMART (Bergadano et al. 1988, template and the method for mapping each
1991), FOIL (Quinlan, 1990, 1991) and FOCL conjunction (pi to a fixed-length bit string.
(Pazzani & Kibler, 1992). A negated

existentially quantified formula has, in L, the 3.1. The Language Template

following syntax:
As mentioned in Section 2, the language L is

i3 Y1..... ym ["1(X, . ... , xn, Y1 ..... y)] (3.4) characterized by a language template A, which

where V is a disjunction of (possibly internally is a conjunctive formula such that every other

disjunct) predicates, each one containing at conjunctive formula (pi of L can be obtained

least one variable in the set yl, y2? ..... Ym. The by deleting some literal from A2. In REGAL

genetic operators can deal with negated the template A obeys the following syntax:

formulas in a similar way as they do with A p(xI, ... , Xd A (3.8)
positive ones. A-3 y1, y, Ynv(x1, ..- Xn, Y1, 3.8)

2 In this paper "literal" is used to refer to a single
The relation "xv is more general than qp" is constant in an internal disjunction, because this
denoted by 4p I < V, according to Michalski last can be transformed into a disjunction of
[19831. literals, as shown by (3.1) and (3.2)
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tautologically false and, hence, A is
In (3.8) both (p and 41 denote conjunctions of tautologically false. As a consequence, a
predicates; moreover, each predicate in •v predicate in mgf can be deleted from the
must contain at least one variable in the set YI, positive part of a formula without changing its
Y2, -'-, Ym, as in (3.4). The template A is, then, extension, whereas a predicate with an empty
partitioned into two subformulas, A+ and A-, internal disjunction can be deleted from the
corresponding to the positive and negated negated part of a formula without changing its
parts of A, respectively. In Fig. 3.1 an extension.
example of a language template is reported,
for the sake of illustration. In the language L there may also. exist

A colour(x, [red, blue, *]) A predicates which do not have internal
shape(x, [square, triangle, *]) A disjunction (for instance, equal(x,y)). These

3y [colour(y, [red, blue, *])A predicates are suggested and added to the
far(x, y, [0, 1, 2,3, *])] language template by the background

A+- colour(x, [red, blue, *]) A knowledge, but are not considered during the
shape(x. [square, triangle. *]) inductive learning process, because they

represent necessary constraints that must
A" ---3y [colour(y, [red, blue, *2 ) . always be present in every concept description

and are not processed by the generalisation

Fig. 3.1 - Example of a language mechanism of REGAL.
template including the unary predicates 3.2. Mapping Formulas to Bit Strings
"6colour" and "shape" and the binary

predicate "far". The template describes a The language template can be represented
scene in which no object y, of any color, using a bit string s(A), where each literal
is at any distance from an object x of (term) occurring in the maximal internal
any color and shape. disjunction of a predicate in A is associated to

Any predicate occurring in 4p or 4 is in mgf. a corresponding bit in s(A). Predicates in A

Each (pi, occurring in any concept description which do not have internal disjunction
(3.7), is a particular instantiation of A. For (necessary constraints) do not need to be
example, the fGtmula: associated to any bit in the string.

colour(x, [red]) A shape(x,[square]) A (3.9) By keeping adjacent in s(A ) the bits
-,3y [colour(y, [blue]) A far(x, y, [2,3])] corresponding to literals that are adjacent in

the template, s(A) will be partitioned into two
is an instantiation of the template reported in parts s(A+) and s(AK), corresponding to A+
Fig. 3.1. Formula (3.9) describes a scene in and AK, respectively. The bit string associated
which no blue object has a distance value of 2 to the template of Fig. 3.1 is reported in Fig.
or 3 from a red square. 3.2. Any other formula in L, obtained by

deleting some literal from A, can be
As discussed before, each predicate in A+ is represented by the bit string s(A), in which the
tautologically true, and, thus, A+ is also values of the bits have been properly set.

tautologically true. On the contrary, A- is
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cokox, (red, ,blue*) A sbape(x,[squr, iagle,1)^ -, 31 [colour(y, (red, bluel)iAfx,y,(0,1,2,3,*D]

s(A+) s(A)

Fig. 3.2 - Bit string associated to the language template reported in Fig. 3.1

This last point needs a separate discussion for illegal, whereas a substring containing all l's
the positive and negative parts of the template. corresponds to the maximal generality for

aconjunct. Then, the system again replaces a
The semantic interpretation of the alleles in string of all O's with a string containing all l's,

the bit string has been defined on the basis of whenever it occurs.
the previous considerations. In particular, for
the positive part of a formula, if the bit In Fig. 3.3 the bit string corresponding to the
corresponding to a given term v in a predicate formula of Fig. 3.2 is reported.
P is set to 1, then v belongs to the current
internal disjunction of P, whereas if it is set to 3.3. Integrating REGAL in a Deductive
0, it does not belong to it. Hence, a substring Laring Framework
containing all 0's for a predicate is illegal and Several authors suggested to use an inductive
it is automatically rewritten as a string of all
l's. On the contrary, for the negated part of a oced to efine con ct desc inobtained by EBG with imperfect domain
formula, the semantic interpretation is the theories. In (Bergadano & Giordana, 1988),
opposite: setting to 1 a bit corresponding to a
given term v means that v is absent from the fr instate nt ationp desrinscorrspodingintrna disuncionwheeas aregenerated from non-operational ones, usingcorresponding internal disjunction, whereas aposbyicmltan/rnosset

it t 0 mans hat isa possibly incomplete and/or inconsistent
setting it to 0 means that it is present. Again, a domain theory and a set of learning events.
substring containing all O's for a predicate is

colour(x, [red]) A shape(x,[squarel) A-,3y [colour(x, [blue])Afar(x,y,[2,3])]

ig 3 01011 1s 0oing 1la 0or 1i Fig 3.1.

Fig. 3.3 - Bit string corresponding to the formula reported in Fig. 3.2.
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The deductive engine, that performs EBG with deductive engine of ML-SMART (Bergadano
many examples at the same time, is similar to et al., 1988, 1991) can be used to generate the
those used in deductive databases. In this way, template A from a domain theory. Afterwards,
those concept descriptions, which need to be REGAL can be invoked as an inductive
refined because they are inconsistent, can be procedure to refine concept descriptions.
detected immediately. The inductive
procedure is similar to the one that was used 4. The Fitness Function
later in FOIL (Quinlan, 1990).

The fitness function gives an evaluation of
An improvement of the method described in how well a formula (p describes a concept h.
(Bergadano & Giordana, 1988) was proposed Three main criteria are usually adopted to
later by the same authors (Bergadano et al., evaluate the quality of a concept description:
1989). The inductive refinement of a concept consistency, completeness and simplicity
description can be made more effective by (Michalski, 1983). The same criteria are
telling the system which parts of the domain adopted here and are combined in the fitness
theory are incomplete. This is done by function. In the following, a family of
extending the classical Horn clause language empirical fitness functions, new with respect
with a special construct called "predicate set", to the one used in GA-SMART, is presented
which is represented using the following and analysed.
syntax:

Let F be the set of learning examples, and let
(PI, P2 , -.. , Pn) -+ Q (3.10) (p be a candidate description of the concept h;

where P1, P2 , ... , Pn and Q denote predicates let, moreover, M+(h) and M'(h) denote the
with their variables. Expression (3.10) means numbers of positive and negative instances of

that a definition for Q was unknown and that it h in F, respectively. Finally, let m (p) and

must be found by induction using the m (qp) be the numbers of positive and negative

description language defined by the predicates instances of h, respectively, belonging to F

occurring in the set (PI, P2 , ... , Pn}. Predicate and verifying (p.

sets are recognized by the deductive engine As a measure of completeness the ratio x =

and are left in proofs as unresolved literals. m+((p)/M+(h) is used, whereas the consistency
Then, the inductive procedure removes the is evaluated by w = m+(+)/[Im+(0) + m-(q)1,
possible inconsistencies in the proofs by i.e., as the ratio between the number of
performing a search in the space defined by
the predicate sets occurring there; as a last positive instances and the global number of
step, predicate sets are eliminated from the instances verifying p (Bergadano et al., 1988,
concept descriptions. 1991). However, w tends to give a too

In this paper, we propose to use the internal optimistic evaluation, especially when the

disjunction formalism to describe predicate number of available negative instances is

sets. The advantages of this choice is that the
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Fig. 4.1 - (a) Plot of (a- w) versus m+(or) and mw(h). (b) Plot of m-((p)/M1(h) versus
m+p) and m-((p). Ile values M+(h) = 750 and M-(h) = 250 have been used.

small in comparison to that of positive ones. The three measures introduced above are

Suppose, for instance, that M+(h) = 750 and combined into a unique function f(cp), defined
Mn(h) = 250; a formula covering all positive as follows:
instances and all negative instances will haveW = 0.75, even if it is totally useless. f((9) -Xnt(1 -yP) + A(e Bx z.1) +D (4.2)

Therefore, we looked for a measure more core A, D << 1 and B, sr, f < T are user-

severely penalising inconsistency. The defined parameters. The resulting surface
currently adopted measure is: representing f((p) in a domain with M-(h) =

) i rpe in 250 and Mp+a(h) = 750 is reported in Fig. 4.3.y =Ma lw,,--..r-(9)) (4.1) We notice that the actual syntactic definition

Fialts mof the function f is not fundamental. What is
In Fig. 4.1(a) and 4.1(b) the plots of (m- w) important is the qualitative shape of theand m-((p)/M-(h) versus m+(9)) and m-(90) are corresponding surface. The proposed function
reported. The plot of y versus. m+((p) and m- is the result of a series of trials, its
((p) is reported in Fig. 4.2. computation time is irrelevant with respect to

Finally, the simplicity of a formula is equated thmacigierquedoevlte+(P

to its syntactic generality and is measured by z and re'(t0). The small value D has been added

= n(1)/n(s), where n(1) is the number of I's in for the following reason: when the population
a string s(A), and n(s) is the total number of is randomly initialized, it is possible that x be
bits in s(A). This may seem a simplistic zero, thus making f(q) zero, which hinders (P

evaluation, but proved to work well in several from being selected for reproduction. A value
test cases. of f(p) different from zero, even if small,
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gives to ip a chance of being selected by the
reproduction operator. 5. Genetic Operators

The fundamental genetic operators used by
REGAL are the classical ones used in the

2so literature, with the addition of two non-
is 20standard crossovers and a new form of

10 mutation called seeding, which will be
so • described later.

0.8 e•Crossover operators are inherited by GA-
0. 6, SMART; in particular, they are the two-point
0. 4 crossover and the uniform crossover,
0. 2 previously used in the literature (De Jong,

0 1975; Syswerda, 1989), and the generalising
20o and specialising crossovers, specifically

,o designed for the task at hand. As described by
Goldberg (1989a), the two-point crossover
creates two new offsprings by exchanging two

Fig. 4.2 - Plot of the y function, defined corresponding substrings randomly selected in

by (4.1), versus m+((p) and m'((p), with the parents. In the uniform crossover, the

M+(h)= 750 and M'(h) = 250. information is exchanged between the two
parents in such a way to give the same chance
of permutation to every bit position. The
parent strings s, and S2 are scanned from left

20 250to right and a probability p = 0.5 of
10 115 •exchanging the values is given to each pair of

0 so- corresponding bits. The two crossovers have
been selected empirically after experimenting

o.6 (with several data sets.

.The generalising and specialising crossovers

o.2r need additional explanations. As described in
00 Fig. 3.2, the string s(A) is divided into
0 2substrings, each one corresponding to a

,400 specific predicate Pi. In both crossover types, a
Fig 4set 1) of predicates is randomly selected in A.Fi g. 4.3 - P lot of th e fi tness function f( (p), e s ci l in cr so r w rk as f l w :defied y (.2) vs vs.m+Q) ad mq), The specialising crossover works as follows:defined by (4.2), vs. vs. m+((p) and m-((p), (a) The substrings in s, and s.,, corresponding

with M+(h) = 750 and M'(h) = 250. The
values used for the parameters are: a = 3 = to the predicates not selected in 1), are copied
0.2, A = 0.002, B = 0.4 and D = 0.000001. unchanged into the corresponding offsprings

s', and s',. (b) For each predicate Pi e 1), a
new substring s'i is generated by AND-ing the
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bits of the corresponding substring sI (P) and language characterised by a template can be so
S2(Pi). The substring s'i is then copied in both large that a randomly generated population
s', and s'2 . The generalising crossover differs may hare no one individual matching any
from the specialising one in that the new element in F. In this case, the fitness is close
predicate s'i is obtained by OR-ing the to zero for all individuals and the search

corresponding bits of s, and s2 . The set D is reduces to a random walk for a long initial
created by assigning an equal probability Pd of phase, until formulas covering a few examples

being selected to each predicate Pi. are discovered by chance. The seeding
operator receives in input a string s

Given a pair of strings <s5,s2>, generated by (corresponding to a formula (p) and returns a
the mating procedure, crossover will be modified string s', which covers at least one
applied with an assigned probability PC. Then, instance randomly selected from F. Therefore,

the specific crossover type is selected the action performed by this operator
statistically by taking into account the features resembles the selection of the seed in the Star
of sI and S2. The probabilities Pu of uniform methodology (Michalski, 1983; Gemello et al.,
crossover, P2pt of two-point crossover, ps of 1991). Finally, seeding operator can also be
specialising crossover and pg of generalising used by REGAL, in alternative to classical
crossover are assigned through the following mutation, in order to reintegrate genetic
set of functions: information lost during the evolution of the

P= (I-af)-b program. This point will be discussed further

P2pt= (1-a.f).(-b) (5.1) in the next section.

PS = a- f -r 6. Learning Multimodal Concepts
The fundamental novelty of REGAL is its

In equations (5.1), a and b are tunable ThfudmnanoetofRGLiisparameqtiosf= (5.1), a and2 bs are tuna ability to learn disjunctive concepts. Learning
parameters, f-= [f(s1 ) + f(s,)]/2 is the mean

disjunctive concepts is a problem inherentlyvalue of the fi tness of th e tw o strin gs s , an d S2, d c p i e f r a g n t c a g r t m n f c ,e cSdeceptive for a genetic algorithm. In fact, each
and r= [(m+(sl) + m-(s) + m+(s2) + n-(s2 )] /[(M+ separate disjunct in the concept description
+ M-) - 2] is the mean value of the ratio corresponds to a local maximum of the fitness
between the number of instances covered by function. Therefore, the genetic algorithm will
(p, and T2, respectively, and the global number frequently try to apply crossover between
of instances in the training set, where (P, and individuals representative of different

V2 are the formulas associated to the bit disjuncts, creating thus offsprings that are
strings si and si. When a formula does not necessarily worst than the parents (because a
cover any instance, then r = 0 and consistent common generalization does not
specialisation is never applied; when a exist).
formula covers all the instances, then r = I and
generalisation is never applied. Two strategies have been experimented in

order to deal with this problem. The first one
The seeding operator is primarily used to is an adaptation of a commonly used
initialise the population in order to start with a technique, which suggests to learn a disjunct
set of formulas covering at least some at a time (Michalski, 1980: Bergadano et al.,
examples in F. In fact, the concept description 1988, Quinlan, 1990). The second one, based
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on the theory of the niches and species (Deb &
Goldberg, 1987), tries to learn a set of The learning set used for the experiment
complete and consistent disjunctive contained 500 instances of Class 1 and 500
descriptions by encouraging the formation of instances of Class 2. Rule 1 covered 98
subpopulations. Both techniques will be instances of Class 1, Rule 2 covered 206 and

discussed and compared using an artificial Rule 3 covered 209. The three subsets were

domain, where a difficult mutimodal concept slightly overlapping, because 13 instances

has been constructed. verified more than one rule.

6.1. Learning one Disjunct at a Time The concept description language used by
REGAL is very similar to the one described in

The test application has been designed by (Michalski, 1980) and is reported in Table 1.
extending the well known train set used by
Michalski (1980). Also in the present case, we Using the strategy of learning a disjunct at a

have two concepts to distinguish: trains going time, REGAL was able to solve the problem.

East and trains going West. Therefore, each In particular, it learned a complete and

learning event is represented as a sequence of consistent description of Class 1, consisting of

items (coaches), each one described by a three disjuncts, covering 216, 200 and 90

vector of attributes referring to shape, colour, positive examples and roughly corresponding

position, length, number of wheels and to Rule 3, 2 and 1, respectively. For example,

number of loads. Thousands of trains have the description of the largest disjunct (216

been generated by a program which selects at examples), is the following:

random the values of the attributes. Then, each coach(x) A coach(y) A follows(x,y) A

train has been classified using a set of length(x, [11) A Nload(x, [I1) A

disjunctive rules. The challenge for REGAL length(y,[2]) A Nload(y, [1,3]) A

was to discover the original rules or a set of colour(y, [white])
equivalent ones.

These results have been obtained using a
The rules for classifying r t ns going East (the population of 800 individuals initialized by the
first concept) are reported in the following: seeding operator. The genetic evolution has

Class 1 - Trains going East been controlled using a linear fitness scaling

Rule 1: In second position there is an open-top mechanism (Goldberg, 1989a) and a

small coach, carrying one load, followed by generation gap of 35%, i.e., only about one

an open-top small coach. third of the individuals was replaced at each

Rule 2: In third position there is a closed-top generation.

small coach carrying one load and an open The system was ran repeatedly, in order to
top small coach in fifth position. find a single partial definition each time, until

Rule 3: In position two, three or four there is a all the training instances of the target concept
small coach, with two wheels and carrying were covered. In particular, at each run, the
one load, immediately followed by a long system was let free to converge to some
white coach carrying one load.
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Table I
Predicates and template charazrizing the concer deacripion language used by REGAL for learning

the Concept o trains going East

Predicates mapped into the bit string

Position(x, [0, 1, 2, 3, 4]) The position number of the coach,
starting from the engine (position 0)

Length(x, [19 2]) Length of the coach (Short or Long)
Wheels(x, [2, 3]) Number of wheels
Nloads(x, (0, 1,2, *2 ) Number of loads
Colour(x, [yl, wh, rd, gr, gy, bk]) yl = yellow, wh =white, etc.
Shape(x, [ot, en, us, or, cr, el, jt, h, sl]) ot = open-top, en = engine, etc.
Distant(x,y, [0, 1, *]) Number of coaches between x and y

Constraint licates men
Folow(x,y) Item y follows item x
Coach(x) Item x is a coach

=mphate

Coach(x) A Position(x, [0, 1, 2, 3, 4]) A Length(x, (1, 2]) AWheels(x, [2, 3]) A
Nloads(x, [0, 1, 2, *]) A Colour(x, [yl, wh, rd, gr, gy, bk]) A
Shape(x, [ot, en, us, or, cr, el, it, he, sl]) A

Coach(y),A Position(x, [0, 1, 2, 3, 4]) A Length(y, [1, 2]) A Wheels(y, [2, 3]) A
Nloads(y, (0, 1, 2, *]) A Colour(y, [yl, wh, rd, gr, gy, bk]) A

Shape(y, [ot, en, us, or, cr, el, jt, he, sl]) A
Position(z, (0, 1, 2, 3, 41) A Length(z, [ 1, 21) A Wheels(z, [2, 31) A

Nloads(z, [0, 1, 2, *]) A Colour(z, [yl, wh, rd, gr, gy, bk]) A
Shape(z, [ot, en, us, or, cr, el, jt, he, si]) AFollow(X,y)ADistant(x,y, [0, 1, *])^Distant(y,z, [0, 1, *])^Distant(x, z., [0, 1,*)

functions (Goldberg & Richardson, 1987).
concept definition qs , which, of course, Crowding is a variant of the basic algorithm
covered only one subset th*n of the positive with respect to reproduction and replacement
instances of Class 1. Then, the instances in . of older individuals. In particular, the new
were removed from F and the system was individuals, generated by crossover and
restarted.Learning one disjunct at a time is mutation, replace the older ones that are most
probably the most easy way to cope with the similar to them, according to a given similarity
deceptiveness of the problem. In fact, as measure. In this way, sub-populations are
deception is due to the simultaneous presence likely to grow up because genetic pressure
of competing disjuncts, removing them as tends to manifest itself primarily among
soon as they are discovered make easier the similar individuals. Both in GA-SMART and
task of learning the remaining ones. in REGAL this method proved to work well to

learn many concepts at one time, but was6.2, Learning Many Disjuncts at One Time unbetalo asalefr tin funable to allow a stable formation of

Two approaches are proposed in the literature subpopulations, representative of disjunctive
to ease the formation of subpopulations: definitions of the same concept. In all the
crowding (De Jong, 1975) and use of sharing experiments performed, in the long term there

was a disjunct overcoming the other ones. The



interpretation we give, in terms of the implicit reduction of the pro-capite incoming
deceptiveness of the problem, is that stronger from the niche it exploits.
disjuncts inhibit the reproduction of the other
ones by means of unfruitful matings. In REGAL, learning events are considered as

life sources that are exploited by the formulas

The method based on sharing functions, unlike covering them. A formula fp matching m++ (0)
crowding, tries to act on the reproduction positive events takes its support from them in
probability in order to inhibit the excessive order to evaluate its fitness. However, if the
growth of the genetic pressure of a same events are matched also by other
subpopulation. This is done by reducing the formulas, the fitness of (p is consequently
fitness of an individual, depending on the reduced, because (p is not essential to cover
number of existing individuals similar to it. In such events. In this way, the reproduction rate
the initial formulation, proposed by Goldberg decreases when formulas become too
& Richardson (1987), genotypical sharing was redundant
considered. The fitness value ft(p), associated
to an individual (p, was considered as a reward The algorithm used to evaluate the fitness,
from the environment to be shared with other shared by competing formulas, can be easily
individuals, proportionally to their similarity understood using the following metaphor:
degree with (p. Similarity between two concept instances are cakes and formulas are
individuals (p and (p' was evaluated as the living being eating cakes:
Hamming distance d(s,s') between thecorresponding bit strings s and s'. 1) After crossover, mutation and seeding,

formulas are evaluated using the function

However, in many cases it is better to consider described in Section 4 for computing their
a semantic distance, i.e., the phenotypical absolute fitness.
distance, rather than the syntactic one, as it has
been discussed in (Deb & Goldberg, 1989). 2) Formulas, sorted according to their absolute
For instance, by referring to our problem, it is fitness, are allowed to eac cakes. Each one
easy to find formulas apparently similar but takes one serving from each one of the cakes
having a very different extension of the associated to the positive instances it covers. Ifhavig a erydiffren extnsin ofthe all servings have been already eaten, it will
learning set F. Therefore, we tried to design a
proper mechanism for sharing fitness, being not have any.

the one described in (Goldberg & Richardson, 3) For each formula (p the shared fitness fh((p)
1987) not suitable to our task. The philosophy is evaluated according to the following
underlying the sharing function approach is
that subpopulations (species) live by
exploiting environmental niches. If a species fsh(•) = f((P) E/m+((P) (6.1)
proliferates too much, it will be limited by the
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60n

50C

40C

30C

200

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

* Cardinality of the single disjunction
* Positive Instances globally covered
* Negative Instances globally covered

Fig. 6.1 - Results obtained using the fitness scaling method with a population of 800
individuals, using a crossover probability pc = 0.5 and a generation gap of 35%.

where E represents the total amount of serving according to decreasing completeness and,

eaten by p and m+((p) the number of positive then, inconsistent disjuncts (17-21) are sorted
instances covered by (p. according to increasing inconsistency. Dashed

(dotted) columns report the global number of
If an individual cannot eat at all, it will have a positive (negative) instances covered by all the
shared fitness equal to zero and then will not disjuncts from the first until the current one.
reproduce. It is worth noting that the first six disjuncts

Experimentation with the test case described cover 450 of the 500 positive instances of
above showed that the method was able to Class 1. They are in a static equilibrium, being
control reproduction rate in order to allow the positioned on F in such a way that each one
formation of stable subpopulations. The exploits a good amount of instances without
results obtained running REGAL through 200 competitors. Such disjuncts were present in
generations and with a global population of the population sir•.e the 60th generation. On
800 individuals, are reported in Fig. 6.1. Black the contrary, the 12 disjuncts from 9 to 21
columns in the histogram represent the were in a kind of dynamic equilibrium, being
numbers of positive instances covered by each in hard competition for survival. They some
one of the first 21 disjuncts, sorted as follows: time disappeared, to reappear later, when
first, the consistent disjuncts (1-16) are sorted regenerated by the genetic evolution. In
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particular, the presence of the small disjuncts shown how this genetic learning paradigm can
from 10 to 16 is due to the continuous creation be integrated with a deductive module in the
of the seeding operator. very same way as in (Bergadano & Giordana,

1988).
We notice that several large disjuncts are
present, some of them corresponding Two techniques have been introduced to learn
approximately to the definitions given by disjunctive concepts. The first one learns one
Rules 2 and 3; others were discovered by disjunct at a time, whereas the second one
performing alternative kinds of generalization, allows subpopulations to be formed. Even if
For instance, the first disjunct corresponds to the work in this direction is still in an early
the following definition obtainable by stage, we have presented a sharing
generalising Rule 3: mechanism which proved effective in

coach(x)A length(x, [1])A bad(y, [1,3])A allowing stable subpopulations, corresponding

colour(y, [wh]) A follow(x,y) (6.2) to different disjuncts, to be formed.
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1. Introduction
Abstract

This paper takes a first step in the direction of
This paper investigates whether an incremental what the author calls "Incremental Evolution",
approach to Genetic Programming (i.e. using and situates it in the context of Multistrategy
Genetic Algorithms to build/evolve complex Learning. A growing number of people around
systems) (de Garis 1990, 1993) is possible. the world (especially those working in the field
The vehicle used to explore this question is of Artificial Life) are now realizing that the rise
that of a simple mapping of binary input of ULSI (ultra large scale integrated) circuits,
vectors to binary output vectors. Since this and future molecular scale technologies will
mapping is learned using Neural Networks, probably necessitate an evolutionary approach
Genetic Algorithms, and Incrementalism - to complex system building, rather than the
Incremental Genetic Programming (or traditional approach of human design
Incremental Evolution) can be considered a (blueprinting). The evolutionary building of
form of Multistrategy Learning. complex systems has been labeled "Genetic

Programming" by the author (de Garis 1990,
Keywords : Multistrategy Learning, 1993). Within our lifetimes, there will be so
Incremental Evolution, Genetic Programming many components in systems, that they will
(GP), Incremental GP, Genetic Algorithms not be designable, because these systems will
(GAs), GenNets (Genetically Programmed have become too complex (too many
Neural Network Modules), Artificial Nervous components, too many complex non linear
Systems, Biots (Biological Robots), interactions). Artificial brains and artificial
Darwinian Robotics, 1000-GenNet Biots, embryos are such examples. Such systems
GenNet Accelerators, GenNet Shaping, will have to self assemble and be evolved to
Cellular Automata (CAs), CA Networks, overcome the complexity barrier. (The beauty
Neurite Networks, CA Neurons, CA of GP, is that the internal complexity of the
Machines, Darwin Machines, CREEPER. system which is successfully evolved, is

irrelevant. This is because the Genetic
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Algorithm, which is the underlying tool of to illustrate the possibility or otherwise of
GP, does not care about the complexity of the incremental GP, was to generat a 1:1 mapping
systems it evolves, so long as the fitness between binary input and binary output
values of the evolving systems keep vectors, where the input/output vector pairs
increasing). were not all supplied at once. Three strategies

were combined to perform this learning task.
In the Brain Builder Group at ATR, we hope The first strategy employed was to use a neural
to build/evolve artificial brains using Genetic network as the vehicle to generate the
Programming techniques in special hardware association. The second strategy was to train
known as Darwin Machines. Thinking about the neural network using an evolutionary
how to do this led the author directly to the approach (i.e. using a Genetic Algorithm). The
problem discussed in this paper, namely - "Is third strategy was to perform this evolution in
it possible to do Genetic Programming an incremental manner. Thus this paper
incrementally?" This question will probably introduces the "Incremental Evolution
become very important in the next few years, Problem" and how a multistrategy learning
because if one evolves a given system S I, approach can help solve it. More concretely, a
which has a given level of complexity and Genetic Algorithm was employed to evolve the
functionality (e.g. a robot "kitten" with an weight values of a fully connected neural
artificial brain, giving it 100 "behaviors"), and network (called a "GenNet" (de Garis 1990,
one then wishes at some later time to evolve a 1993) which initially contained N neurons to
more sophisticated system S2 (e.g. a robot perform T tasks. The results (i.e. the evolved
"cat" with 1000 "behaviors"), does one just weights of the N neurons) were then taken,
throw away the first system S I and all the man and to this neural network were added a few
years of work that went into it, or is it possible more neurons dN, to evolve the performance
to evolve S2 using S I as a base, i.e. can one of a few more tasks dT. This paper investigates
evolve S2 incrementally from S I (as happens
in nature). The author believes that in the (a) whether this can be done at all (the most
1990s, there will be strong economic pressure important question in view of the above
to solve the "incremental GP problem". discussion on incremental evolution, i.e.

incremental GP),
Having stressed the importance of the question
(i.e. can one GP incrementally), this paper (b) and if so, as a possible bonus, whether it
makes an initial attempt at providing an might be faster to evolve an N+dN
answer, by taking a multistrategy learning GenNet performing T+dT tasks
approach to the problem of mapping binary incrementally (i.e. [N,T], then [N+dN,
input vectors to binary output vectors. More T+dT]), than to do N+dN from scratch.
specifically, it shows how a multistrategy
learning approach was applied to the task of (c) how the two approaches (i.e fzomn scratch
generating an associative memory in an or incremental) compare in task
incremental fashion. The particular task chosen performance quality.
to illustrate this multistrategy approach is
merely an illustration. The emphasis of this It is believed by the author that the concept of
paper is on "incremental evolution", and not Incremental Evolution will become increasingly
upon neural networks, nor associative important as more research groups attempt to
memory, nor neural network learning build artificial nervous systems (ANS) using
algorithms which add neurons to the net evolved neural networks as modules. This type
incrementally. "Incremental evolution" is a of work is now going on in at least four labs
new topic, and has little to do with the already (as far as the author is aware) around the
substantial literature on what is conventionally world, i.e. the author's "Brain Builder Group"
called "incremental learning" (i.e. the at ATR, Beer's group at Case Western Reserve
incremental generation of classes, given one-at- University, Arbib's group at the University of
a-time presentation of elements to be Southern California, and Cliff et al's group at
classified), despite the similarity of the two Sussex University. Sooner or later, all of these
topic labels. The simple example chosen here groups will have to face the question of
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Incremenal Evohtaon, Le. "Whether it is better More formally, where vtarg is the desired or
(i.e. easier, quicker) to scrap an earlier, simpler target output value, Vout is the actual output
artificial nervous system (ANS), by value, and dF is the fitmess contribution
building/evolving a newer, bigger ANS from
scratch, OR, whether it is better to add IF vtar = 0.0
components to the already existing ANS, i.e. [ 0.0,
to build/evolve incrementally?" Nature was
forced to build incrementally because it did not dF - + (0.0 - vout )2]
have the luxury to scrap an earlier design. Each ELSE [IF vout > 0.0,
step in nature's evolutionary path had to be dF = -1000*(vout - 0.0)2 ])
from one viable design to another
(incrementally modified) but equally viable EF =07
design. targ

(THEN[IF vout < 0.7,
2. The Experiments dF m .-1000*(0.7 - vout )2]

ELSE [IF vout > 0.7,
In an attempt to answer the three questions dF vout > 0.7,

above (i.e. (a), (b), (c)), a GenNet of 12 (fully dF = + (vout - 0.7)2])
connected) neurons was evolved (using a
Genetic Algorithm) which mapped 4-bit input These fitness contributions were defined so
vectors to 4-bit output vectors. The four input that vout values lying outside the "0" and "I"
neurons were distinct from the four output regions were heavily penalized, and so that
neurons. During all of these experiments, the Vout values lying inside these regions were
input/output ([11/[O]) pairs that were used were rewarded mildly, so as to push the vout values
taken from the following 5 :- ([10101/10110], towards +1.0 and -1.0 (corresponding to
[l110]/[0010], [0011]/[0100], [110011(1001] binary values "1" and "0" respectively). If P
and [( 101]/[0011]). Real input or output input vectors were presented to the GenNet,
values less than 0.2 were arbitrarily interpreted the total fitness definition was defined to be
to be a binary "0", and input or output values
greater than 0.4 were arbitrarily interpreted to I p
be a binary "I". To measure the fitness of an fitness = T , (20000 + dFij))
evolving GenNet, the following approach was j=1 ii
used. For a given binary input vector, e.g.
[ 1010], its desired or target output was [0 110], where i ranged over the four components of a
according to the above list. The input vector single output vector, and j ranged over the P
[1010] and desired output vector were input vectors. A brief description of the
converted into their respective input and output evolution of a GenNet is now given, for those
signal values, to become [0.5, 0.1, 0.5, 0.1] not already familiar with iL
and [0.0, 0.7, 0.7, 0.0]. (The 0.5 and 0.7
values were chosen because experience This description has appeared already in many
showed they facilitated GenNet dynamics). publications (e.g. de Gadis 1990, 1993). A
The four input vector component values were GenNet is a Genetically Programmed Neural
interpreted to be the (clamped) external input Network. Genetic Programming is defined to
values of the four input neurons of the GenNet be the use of Genetic Algorithms (GAs) as
being evolved. If the outputs at the 100th cycle builders of complex systems. A GA was used
(giving plenty of time for transients to die out to evolve the weight values and signs of neural
and the outputs to stabilize) were [0.23, 0.35, connections so that the outputs of the GenNet
0.56, -0.18], then the fitness of this output took desired values (or in some experiments,
was defined to be :- controlled some system in desired ways). A

fitness = 20,000 - 1000*(0.23 - 0.0)2 GenNet is a fully connected network.

- 1000*(0.7 - 0.35)2 + (0.56 - 0.7)2 For a connection, and hence weight (wii)
+ (0.0 - -0.18)2 between neuron Ni" and neuron "j", one bit is
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used for the weight's sign (0 for an excitatory passable. The output values at the 100th cycle
synapse, 1 for an inhibitory synapse), and 6 to of the elite chromosomes are shown in FIG.2.
8 bits are used for the weight (assumed to have The 4 input/output pair case, shows that for a
an absolute value less than 1.0, and which is 12-Neuron GenNet, 4 pairs are too many.
expressed as a binary fraction). Thus if the Note that for each of these 3 graphs the 2, 3
number of bits "B" used to express the weight and 4 1/0 pair case GenNets were evolved
is 6, then the binary string 1110100 is from scratch, i.e. there was no incremental
equivalent to the weight -0.8125 Hence for a evolution used. A 16-Neuron GenNet was then
GenNet of N neurons, the number of bits in evolved with 4 and 5 1/0 pairs respectively.
the chromosome which specifies all the The 4 1/0 pair case evolved "acceptably", but
weights and signs of the connections between the 5 1/0 pair case did not. See FIG.3 for the
the N neurons, will be N*N*(B+1). Each sign fitness growths of the 4 and 5 1/0 pair cases.
and weight is concatenated onto the
chromosome. T,• CLIM TA OUTS

0.0 0.07 0.0 410 0.0 0.03
0.7 0.72 0.7 as 0.7 OAS
0.7 0. 0.7 .72 0 0.46

0.0 0.0 0.0 .0. 0.0 0.00

U I P • 0.0 -0.01 0.0 0.03"0.0 I'

1 0.7 1 0.86 0.7 o1---7- 0- 1 0.43"1PAo.0 1 .o.T 0. -0." . 02

N-12. 2 PAIRS 0.0 0.19 0.0 -0.31
0.7 0.56 0.7 0.79
0.0 0.19 0.0 0.11

00 0.0 -0.32

N - 12. 3 PAIRS 0.43

0.0 0.15

"0.7 0.43

N-i?. 4 PAIRS

FIG.2 OUTPUT VALUES
for 12-Neuron GenNets (2,3,4 PAIRS)

FIG.1 FITNESS EVOLUTIONS FIG.4 shows the output values at the 100th
for 12-Neuron GenNets (2,3,4 PAIRS) cycle of the elite chromosomes for the two

cases. The 5 1/0 pair case, shows that for a 16-
Neuron GenNet, 5 pairs were too many. Note

Thus the connection (sign and weight) between that for each of these 2 graphs the 4 and 5 1/0
neuron "i" and neuron )j" will be expressed by pair case GenNets were evolved from scratch,
the (i*N + j)th group of (B+I) bits. These i.e. there was no incremental evolution used.
(B+I) bits on the chromosome are called a
"slot". An initial population of randomly The chromosome population which resulted
generated chromosomes of this length is used from the evolution of the 12-Neuron, 3 LK0 pair
to evolve the required GenNets. We turn now case, was then "inserted" into the initial
to some initial results. FIG.1 shows the fitness population in an experiment to evolve
rise as a function of the number of generations, (incrementally) a 16-Neuron, 4 1/0 pair case.
for the three cases of 2, 3 and 4 input/output However these (16-Neuron GenNet)
pairs, as listed earlier. In the 2 and 3 pair chromosomes needed to be lengthened in order
cases, the final fitness values stabilized at to specify the signs and weights of the
values thought to be "acceptable", where connections with the 4 extra neurons. These
"acceptable" was defined to mean that if the signs and weights (i.e. slots) of the
target output was 0.0, then any output less than connections between the original 12 and the
0.2 was passable, and if the target output was extra 4 neurons were concatenated onto the
0.7, then any output greater than 0.4 was original chromosomes.
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-- ,,- contained in the earlier pan of the cmsome
(e.g. Region "A" is interpreted in the same

- way, i.e. codes for the connection weights and
S PAM signs between the original 12 neurons, even

when 4 more neurons are added).

IM The second reason was that this representation
also allows incremental evolution, i.e. one can
"load" or insert a smaller (earlier) chromosome
(which results from an earlier phase of
evolution) into a later, larger chromosome for a
second phase of evolution. For example, in
FIG. 5 one could load the first 12*124lots

H M- t,,o (which resulted from the evolution of a 12-
Neuron GenNet) into Region "A" of the 16* 16
slots of the chromosome representing a 16-

FIG.3 FITNESS EVOLUTIONS Neuron GenNet.
for 16-Neuron GenNets (4, 5 PAIRS) Thus, to perform the incremental evolution of

this experiment, the 12* 12 (Region "A")
TARG ours TAm ours weight matrix which resulted from the

0.0 .0.56 .0 -0.14 evolution of the chromosome of the 12-Neuron
0.7 0.7 0.7 0.40 GenNet with 3 1/0 pairs, was loaded into
0.7 0.69 0.7 0.49 region "A" of the chromosomes for a 16-
0.0 .0.63 0.0 .03 Neuron GenNet. Actually an initial population
0.0 -0.14 0.0 0.13 of chromosomes for a 16-Neuron GenNet was
0.0 7 0.01 0.0 0.1" randomly generated, followed by the
0.7 0o.8 0.7 0.53 overwriting of the Region "A" of each
0.0 -0.43 0.0 .0.29 chromosome of that 16-Neuron GenNet

0.7 0.76 0.7 o.60 population by the 12-Neuron GenNet
0.0 .o.o4 o.o o0.1 chromosome population.
0.0 -0.52 0.0 -0.62
0.7 0.68 0.7 0.43 One was then curious to see if the evolution of
0.0 0.80 0.0 0.31 this "incremented" 16-Neuron GenNet using 4
0. -0.26 0. 0.33 1/0 pairs would occur at all, and if so, would it0-7 0.64 0.7 0.63

N - 16. 4 PAIRS 0.0 0.42 occur faster than the evolution from scratch of
0.0 -0.37 the 16-Neuron GenNet with 4 I/O pairs, as
0.7 0.35 shown in FIG. 3. Intuitively, one feels that
0.7 0.63 since part of the search space of the

N - 16. s PAIRS incremented 16-Neuron GenNet has already
been searched, i.e. the "portion" of the search
space of the 12-Neuron GenNet that is inserted

FIG. 4 OUTPUT VALUES into the 16-Neuron GenNet chromosomes,
for 16-Neuron GenNets (4, 5 PAIRS) then the evolution of the remaining search

space which is added with the addition of the 4
new neurons, would be quicker than having to

FIG.5 shows how this was done. In any evolve the whole search space corresponding
region, slots were read from left to right and to a 16-Neuron GenNet from scratch.
then from top to bottom. This representation of
the chromosome was chosen for two rather Whether the final stabilized fitness value of the
obvious reasons. The first reason was that elite incremented chromosome would be the
adding further neurons (and hence extending same as that for the evolution-from-scratch
the length of the chromosome) would not case is difficult to predict. FIG. 6 shows the
change the interpretation of the information results. The incremented GenNet obviously
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evolved, which is the first and most critical T12+4,3+lp 350 generations
result. Thus a GenNet can be incrementally (fitness > 1900.0),
GPed. Secondly, it evolved more quickly that T16,4p = 500 generations
the "from scratch" case (whose fitness curve is (fitness > 1900.0)
copied over from FIG. 3) for the first 500
generations or so. Thirdly, the fitness value Therefore, T12,3p + T12+4,3+lp and T16,4p
stabilized at a value noticeably lower than the are of comparable size (i.e. 550 and 500), i.e.
"from scratch" case. This was thought to be it takes about the same time to perform a two
significant. It will be interesting to see whether step incremental evolution, as to perform the
other researchers, when employing incremental same size evolution from scratch. BUT, note
evolutionary techniques to other applications, that T12+4,3+lp is quicker than T16,4p.
observe the same "better sooner, worse later" These comparative times are debatable, because
phenomenon. If so, then this new "effect" they depend upon the fitness levels chosen
might be worthy of being given a name. which define when evolutions are "completed".

1 2 3 4 11 12 13 16 N, -m

I
2 WEIGHT MATRIX . "
3
4 FOR 12 NEURONS ;'

z

REGION "A (12*12 w

12 I
13 REGIOj"D_•. . . .. . . ..

16 (EG4) @N(e2)wsom -

FIG. 6 FITNESS EVOLUTIONS
for 16- and (12+4)-Neuron GenNets

REGION "A' C" TARG OUTS TARG OUTS

(1212) (14) (4"12) (4"4) 0.0 40.56 0.0 -0.0401.7 0.72 0.7 0.75
- INITIAL 40.,d.,vIEM 0.7 0.69 07 0.46

CHCM.EOA -0.63 OA .0.5%

0.0 -0.14 00 -0.20
FIG. 5 INCREMENTED WEIGHT 0.0 0.01 0.0 -0.42

MATRIX 0.7 0.8 0.7 0.47
0.0 -0.13 0.0 -0.530.0 -0.49 0 .04.03

When one compares the time taken to evolve a 0.7 0.76 0.7--0.72

12-Neuron, 3 1/0 pair GenNet (T12,3p), plus 0.0 -0.0 4 0.0 037

the time taken to incrementally evolve (from 0.0 -0.- 2 0.0 .0.40
this 12-Neuron GenNet) a 16-Neuron, 3+1 1/0 0.7 _ .8 0.7 027
pair GenNet (T12+4,3+lp), and compare this 0.0 .0. 0.0 029
sum (T12,3p + T12+4,3+lp) with the time 0.0 -0.26 0.0 .0.46
taken to evolve a 16-Neuron, 4 I/O pair 0.7 0.64 0.7 0.63

GenNet from scratch (T16,4p), one observes Na 16, 4 PAIRS N= 12.4. 3+1 PAIRS

from FIGs. 1 and 6, that approximately :-
FIG. 7 OUTPUT VALUES

T12,3p - 200 generations for 16-Neuron & (12+4)-Neuron GenNets
(fitness > 1900.0), (4 Prs) & (3+1 Prs)
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3. Conclusions and Future function like a neuron (with addition of

Work dendrit - 'ignal strengths, and axonal output
conversJ.-.' Axon signals remain at constant

One can draw some tentative conclusions from strength, ý,ut at a synapse, dendritic signal
the above work. Firstly, and most critically, in strengths drop off as a function of the distance
this one case at least, incremental evolution from the axn/dendrite synapse, the edistance
worked (but the final quality seemed to be between the axon/dendrite synapse, the weaker
lower than a from-scratch approach). A lot the signal arriving at the neuron. Hence the
more work needs to be done by other distances correspond to the weights in
researchers with other examples to check if conventional neural network formulations. But
these initial results obtained by the author are the distances can be evolved in the first phase.
generally true. As a sideline, it also appeared Hence, using GPed "neurite networks" (a
that theal truime taken to perform the initial neurite is a baby neuron which grows) based
evolution plus the incremented evolution on CAs, it is possible to both grow and evolve
eTion,3p+T124,31 plus the i rem d evolution neural nets. The author's program based on
(T12,3p +fT12+4,3+lp) was roughly equal to these ideas is called "CREEPER". If these
the from-scratch evolution (Tr6,4p). So does GPed "neurite nets" prove to be evolvable (i.e.
this mean that future research teams using GP their fitnesses improve over time), then the
methods to build their artificial nervous ideas will be extended from 2 to 3 dimensions,
systems have a choice of two approaches, i.e. and hopefully later to a hardware
either to increment or rebuild? The question implementation, using CAMs (i.e. CA
remains open. However, GIVEN that one Machines). By having a population of these
already has an evolved GenNet, it is quicker to CAMs, plus local micro processors to measure
evolve it incrementally than to start over from the fitnesses and to control the GA aspects of
scratch (i.e. T12+4,3+lp < T16,4p). the evolution, we have the beginnings of a
Hopefully, this result will prove to be general, Darwin Machine design. The Brain Builder
and will apply to artificial nervous systems. Group hopes to evolve large numbers of neural

modules (GenNets, i.e. GPed neural nets) and
At the time of writing, the author is attempting connections between them, using such Darwin
to GP artificial nervous systems using cellular Machines. The artificial nervous system which
automata (CA) as a base. The idea is to grow results will be destined to control a robot kitten
CA trails (3 cells wide), by sending 4 types of with about 100 "behaviors". It will take"signals" down the middle of the trail. When several man years of work to build such a biot
the signals hit the end of the trail, four types of (biological robot), so the group will be highly
action can occur, depending upon the type (i.e. motivated not to have to start from scratch each
the state or color) of the signal (red = turn trail time we want to increase the biot's capabilities.
left, green = turn trail right, brown = extend Hence again, the question raised by this paper
trail one cell, purple = split trail into a T "How to GP incrementally", is emphasized.
intersection). The sequence of these signals
corresponds to a chromosome in a GA, and References
hence can be evolved. There is thus a mapping
between the sequence and a CA network. de Garis H., "Genetic Programming: Building
When two trails collide, a "synapse" is formed Artificial Nervous Systems Using Genetically
which absorbs oncoming signals. Programmed Neural Network Modules", Hugo
In the first of a two phase process, the trails are de Garis, in Porter B.W. & Mooney R.J.
laid down. In the second phase, the CA eds., Proc. 7th. Int. Conf. on Machine
network uses a second set of CA state Learning, pp 132-139, Morgan Kaufmann,
transition rules to make the network behave 1990.
like a neural network, whose fitness at de Garis H., "Genetic Programming
performing some desired task can be GenNets, Artificial Nervous Systems,
measured. To make the CA network behave Artificial Nerv s S y
like a neural network, CA state transition rules Artificial Embryos", Hugo de Gais, WILEY
need to be defined which make a CA system manuscript, 1993.
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Abstract the actions to carry out the movement in a real
This paper presents a self-improving reactive or simulated world. Several methods have been
control system for autonomous robotic naviga- proposed for this task, ranging from high-level
tion. The navigation module uses a schema- planning methods to reactive control methods.
based reactive control system to perform the High-level planning methods use extensive
navigation task. The learning module combines world knowledge and inferences about the envi-
case-based reasoning and reinforcement learn- ronment they interact with (Fikes, Hart & Nils-
ing to continuously tune the navigation system son, 1972; Sacerdoti, 1975). Knowledge about
through experience. The case-based reason- available actions and their consequences is used
ing component perceives and characterizes the to formulate a detailed plan before the actions are
system's environment, retrieves an appropriate actually executed in the world. Such systems can
case, and uses the recommendations of the case successfully perform the path-finding required
to tune the parameters of the reactive control by the navigation task, but only if an accurate and
system. The reinforcement learning component complete representation of the world is available
refines the content of the cases based on the cur- to the system. Considerable high-level knowl-
rent experience. Together, the learning com- edge is also needed to learn from planning expe-
ponents perform on-line adaptation, resulting in riences (e.g., Hammond, 1989a; Minton, 1988;
improved performance as the reactive control Mostow & Bhatnagar, 1987; Segre, 1988). Such
system tunes itself to the environment, as well as a representation is usually not available in real-
on-line learning, resulting in an improved library world environments, which are complex and dy-
of cases that capture environmental regularities namic in nature. To build the necessary repre-
necessary to perform on-line adaptation. The sentations, a fast and accurate perception pro-
system is extensively evaluated through simula- cess is required to reliably map sensory inputs
tion studies using several performance metrics to high-level representations of the world. A
and system configurations. second problem with high-level planning is the
Keywords: Robot navigation, reactive con- large amount of processing time required, result-
trol, case-based reasoning, reinforcement learn- ing in significant slowdown and the inability to
ing, adaptive control. respond immediately to unexpected situations.

1 Introduction Situated or reactive control methods have been
proposed as an alternative to high-level plan-

Autonomous robotic navigation is defined as the ning methods (Arkin, 1989; Brooks, 1986; Kael-
task of finding a path along which a robot can bling, 1986; Payton, 1986). In these meth-
move safely from a source point to a destination ods, no planning is performed; instead, a sim-
point in an obstacle-ridden terrain, and executing ple sensory representation of the environment
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is used to select the next action that should be sion of the lessons learned from this research
performed. Actions are represented as simple and suggests directions for future research.
behaviors, which can be selected and executed
rapidly, often in real-time. These methods can 2 Technical Details
cope with unknown and dynamic environmen- 2.1 S
tal configurations, but only those that lie within
the scope of predetermined behaviors. Further- The Self-Improving Navigation System (SINS)
more, such methods cannot modify or improve consists of a navigation module, which uses
their behaviors through experience, since they schema-based reactive control methods, and an
do not have any predictive capability that could on-line adaptation and learning module, which
account for future consequences of their actions, uses case-based reasoning and reinforcement
nor a higher-level formalism in which to repre- learning methods. The navigation moduib is re-
sent and reason about the knowledge necessary sponsible for moving the robot through the envi-
for such analysis. ronment from the starting location to the desired

goal location while avoiding obstacles along theWe propose a self-improving navigation system way. The adaptation and learning module has
that uses reactive control for fast performance, two responsibilities. The adaptation sub-module
augmented with multistrategy learning methods performs on-line adaptation of the reactive con-
that allow the system to adapt to novel environ- trol parameters to get the best performance from
ments and to learn from its experiences. The sys- the navigation module. The adaptation is based
tem autonomously and progressively constructs on recommendations from cases that capture and
representational structures that aid the naviga- model the interaction of the system with its en-
tion task by supplying the predictive capability vironment. With such a model, SINS is able to
that standard reactive systems lack. The repre- predict future consequences of its actions and
sentations are constructed using a hybrid case- act accordingly. The learning sub-module mon-
based and reinforcement learning method with- itors the progress of the system and incremen-
out extensive high-level reasoning. The system tally modifies the case representations through
is very robust and can perform successfully in experience. Figure 1 shows the SINS functional
(and learn from) novel environments, yet it com- architecture.
pares favorably with traditional reactive meth-
ods in terms of speed and performance. A fur- The main objective of the learning module is
ther advantage of the method is that the system to construct a model of the continuous senso-
designers do not need to foresee and represent rimotor interaction of the system with its envi-
all the possibilities that might occur since the ronment, that is, a mapping from sensory in-
system develops its own "understanding" of the puts to appropriate behavioral (schema) param-
world and its actions. Through experience, the eters. This model allows the adaptation module
system is able to adapt to, and perform well in, to control the behavior of the navigation module
a wide range of environments without any user by selecting and adapting schema parameters in
intervention or supervisory input. This is a pri- different environments. To learn a mapping in
mary characteristic that autonomous agents must this context is to discover environment config-
have to interact with real-world environments. urations that are relevant to the navigation task

and corresponding schema parameters that im-
This paper is organized as follows. Section 2 prove the navigational performance of the sys-
presents a technical description of the system, in- tem. The learning method is unsupervised and,
cluding the schema-based reactive control com- unlike traditional reinforcement learning meth-
ponent, the case-based and reinforcement learn- ods, does not rely on an external reward func-
ing methods, and the system-environment model tion (cf. Watkins, 1989; Whitehead & Ballard,
representations, and places it in the context of re- 1990). Instead, the system's "reward" depends
lated work in the area. Section 3 presents several on the similarity of the observed mapping in the
experiments that evaluate the system. The re- current environment to the mapping represented
sults shown provide empirical validation of our in the model. This causes the system to converge
approach. Section 4 concludes with a discus- towards those mappings that are consistent over
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RObot Agmet of a set of motor schemas that represent the indi-
- Lowning ,. vidual motor behaviors available to the system.
it ,,- $own Each schema reacts to sensory information fromrI h the environment, and produces a velocity vec-

tor representing the direction and speed at which
the robot is to move given current environmen-
tal conditions. The velocity vectors produced by
all the schemas are then combined to produce a
potential field that directs the actual movement
of the robot. Simple behaviors, such as wan-_Environmnt dering, obstacle avoidance, and goal following,

Figure 1: System architecture can combine to produce complex emergent beL
haviors in a particular environment. Different
emergent behaviors can be obtained by mod-

a set of experiences. ifying the simple behaviors. This allows the
The representations used by SINS to model its system to interact successfully in different en-
interaction with the environment are initially vironmental configurations requiring different
under-constrained and generic; they contain very navigational "strategies" (Clark, Arkin, & Ram,
little useful information for the navigation task. 1992).
As the system interacts with the environment, the A detailed description of schema-based reac-
learning module gradually modifies the content tive control methods can be found in Arkin
of the representations until they become useful (1989). In this research, %, used three motor
and provide reliable information for adapting the schemas: AVOID-STATIC-OBSTACLE, MoVE-To-
navigation system to the particular environment GOAL, and NOISE. AVOID-STATIC-OBSTACLE di-at hand. GAadNIE VI-TTCOSAL i

rects the system to move itself away from de-
The learning and navigation modules function tected obstacles. MovE-TO-GoAL schema di-
in an integrated manner. The learning module is rects the system to move towards a particular
always trying to find a better model of the inter- point in the terrain. The NOISE schema makes
action of the system with its environment so that the system to wander in a random direction.
it can tune the navigation module to perform its Each motor schema has a set of parameters that
function better. The navigation module provides control the potential field generated by the mo-
feedback to the learning module so it can build tor schema. In this research, we used the fol-
a better model of this interaction. The behavior lowing parameters: Obstacle-Gain, associated
of the system is then the result of an equilib- with AVOID-STATIC-OBSTACLE, determines the
rium point established by the learning module magnitude of the repulsive potential field gener-
which is trying to refine the model and the envi- ated by the obstacles perceived by the system;
ronment which is complex and dynamic in na- Goal-Gain, associated with MovE-TO-GOAL,
ture. This equilibrium may shift and need to be determines the magnitude of the attractive po-
re-established if the environment changes dras- tential field generated by the goal; Noise-Gain,
tically; however, the model is generic enough at associated with NOISE, determines the magni-
any point to be able to deal with a very wide tude of the noise; and Noise-Persistence, also
range of environments, associated with NOISE, determines the duration
We now present the reactive module, the repre- for which a noise value is allowed to persist.
sentations used by the system, and the methods Different combinations of schema parameters
used by the learning module in more detail. produce different behaviors to be exhibited by

2.2 The Schema-Based Reactive Control the system (see figure 2). Traditionally, param-
Module eters are fixed and determined ahead of time by

the system designer. However, on-line selec-
The reactive control module is based on the tion and modification of the appropriate param-
AuRA architecture (Arkin, 1989), and consists eters based on the current environment can en-
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Figure 2: Typical navigational behaviors of different tun- c
ings of the reactive control module. The figure on the left k .
shows the non-learning system with high obstacle avoid-
ance and low goal attraction. On the right, the learning
system has lowered obstacle avoidance and increased goal IQCM
attraction, allowing it to "squeeze" through the obstacles
and then take a relatively direct path to the goal. No # Sp

hance navigational performance (Clark, Arkin, Figure 3: Sample representations showing the time his-
& Ram, 1992; Moorman & Ram, 1992). SINS tory of analog values representing perceived inputs and
adopts this approach by allowing schema param- schema parameters. Each graph in the case (below) is
eters to be modified dynamically. However, in matched against the corresponding graph in the currentenvironment (above) to determine the best match, after
their systems, the cases are supplied by the de- which the remaining part of the case is used to guide nay-
signer using hand-coded coded cases. Our sys- igation (shown as dashed lines).
tern, in contrast, can learn and modify its own
cases through experience. The representation of
our cases is also considerably different and is SINS uses a model consisting of associations
designed to support reinforcement learning. between the sensory inputs and schema param-

eters values. Each set of associations is rep-
2.3 The System-Environment Model resented as a case. Sensory inputs provides

Representation information about the configuration of the en-
vironment, and schema parameter information

The navigation module in SINS can be adapted specifies how to adapt the navigation module in
to exhibit many different behaviors. SINS iwa the environments to which the case is applica-
proves its performance by learning how and ble. Each type of information is represented as
way, the to ste the tio module nthis a vector of analog values. Each analog value
way, the system can use the appropriate behav- corresponds to a quantitative variable (a sensory
ior in each environmental configuration encoun- input or a schema parameter) at a specific time.
tered. The learning module, theefore, must A vector represents the trend or recent history
learn about and discriminate between different of a variable. A case models an association be-
environments, and associate with each the ap- tween sensory inputs and schema parameters by
propriate adaptations to be performed on the grouping their respective vectors together. Fig-

motor schemas. This requires a representational ure 3 show an example of this representation.

scheme to model, not just the environment, but

the interaction between the system and the en- This representation has three essential proper-
vironment. However, to ensure that the system ties. First, the representation is capable of cap-
does not get bogged down in extensive high- turing a wide range of possible associations be-
level reasoning, the knowledge represented in tween of sensory inputs and schema parameters.
the model must be based on perceptual and mo- Second, it permits continuous progressive re-
tor information easily available at the reactive finement of the associations. Finally, the repre-
level. sentation captures trends or patterns of input and
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output values over time. This allows the sys- the learning module is perceiving the environ-
tern to detect patterns over larger time windows ment, detecting an environment configuration,
rather than having to make a decision based only and modifying the schema parametrrs of the
on instantaneous values of perceptual inputs, navigation module accordingly, while simulta-

In this research, we used four input vectors neously updating its own cases to reflect the ob-
tc characterize the environment and discrim- served results of the system's actions in various
inate among differertt environment configura- situations.
tions: Obstacle-Density provides a measure The method is based on a combination of ideas
of the occupied areas that impede navigation; from case-based reasoning and learning, which
Absolute-Motion measures the activity of the deals with the issue of using past experiences to
system; Relative-Motion represents the change deal with and learn from novel situations (e.g-,
in motion activity; and Motion-Towards-Goal see Kolodner, 1988; Hammond, 1989b), and
specifies how much progress the system has ac- from reinforcement learning, which deals with
tually made towards the goal. These input vec- the issue of updating the content of system's
tors are constantly updated with the information knowledge based on feedback from the environ-
received from the sensors. ment (e.g., see Sutton, 1992). However, in tradi-

We also used four output vectors to represent tional case-based planning systems (e.g., Ham-
the schema parameter values used to adapt the mond, 1989a) learning and adaptation requires a
navigation module, one for each of the schema detailed model of the domain. This is exactly
parameters (Obstacle-Gain, Goal-Gain, Noise- what reactive planning systems are trying to
Gain, and Noise-Persistence) discussed earlier, avoid. Earlier attempts to combine reactive con-
The values are set periodically according to the trol with classical planning systems (e.g., Chien,
recommendations of the case that best matches Gervasio, & DeJong, 1991) or explanation-
the current environment. The new values remain based learning systems (e.g., Mitchell, 1990)
constant until the next setting period, also relied on deep reasoning and were typically
The choice of input and output vectors was based too slow for the fast, reflexive behavior required
on the complexity of their calculation and their in reactive control systems. Unlike these ap-relevance to the navigation task. The input vec- proaches, our method does not fall back onslow

tors were chosen to represent environment con- non-reactive techniques for improving reactive
figurations in a generic manner but taking into control.
account the processing required to produce those To effectively improve the performance of the
vectors (e.g., obstacle density is more generic navigation task, the learning module must find a
than obstacle position, and can be obtained eas- consistent mapping from environment configu-
ily from the robot's ultrasonic sensors). The rations to control parameters. The learning nod-
output vectors were chosen to represent directly ule captures this mapping in the learned cases,
the actions that the learning module uses to tune each case representing a portion of the map-
the navigation module, that is, the schema pa- ping localized in a specific environment con-
rameter values themselves. figuration. The set of cases represents the sys-

tem's model of its interactions with the envi-2.4 The On-Line Adaptation And Learning ronment, which is adapted through experience
Module

using the case-based and reinforcement learn-
This module creates, maintains and applies the ing methods. The case-based method selects the
case representations used for on-line adapta- case best suited for a particular environment con-
tion of the reactive module. The objective of figuration. The reinforcement learning method
the learning method is to detect and discrim- updates the content of a case to reflect the cur-
inate among differ-nt environment configura- rent experience, such that those aspects of the
tions, and to identify the appropriate schema mapping that are consistent over time tend to be
parameter values to be used by the navigation reinforced. Since the navigation module implic-
module, in a dynamic and an on-line manner. itly provides the bias to move to the goal while
This means that, as the system is navigating, avoiding obstacles, mappings that are consis-
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tently observed are those that tend to produce is handed to the adapt step, which selects the
this behavior. As the system gains experience, schema parameter values Ck from the out-
therefore, it improves its own performance at the put vectors of the case and modifies the values
navigation task. currently in use using a reinforcement formula

Each case represents an observed regularity be- which uses the case similarity metric as a scalar
renvironmental configuration reward. Thus the actual adaptations performedtween a particular evrnetlcfiuaon depend on the goodness of match between the

and the effects of different actions, and pre- case and the environment, and are given by:

scribes the values of the schema parameters that
Ck bt min(IE - P,,,,, IC)

are most appropriate (as far as the system knows , Vmn)
based on its previous experience) for that en- 11 - RSMIrandom(O,maxCk. )
vironment. The learning module performs the k

following tasks in a cyclic manner: (1) perceive where RSM is the relative similarly metric dis-
and represent the current environment; (2) re- cussed below. The random factor allows the
trieve a case whose input vector represents an system to "explore" the search space locally in
environment most similar to the current envi- order to discover regularities, since the system
ronment; (3) adapt the schema parameter val- does not start with prior knowledge that can be
ues in use by the reactive control module by in- used to guide this search.
stalling the values recommended by the output Finally, the learn step uses statistical informa-
vectors of the case; and (4) learn new associ- don about prior applications of the case to de-
ations and/or adapt existing associations repre- termine whether information from the current
sented in the case to reflect any new information application of the case should be used to mod-
gained through the use of the case in the new ify this case, or whether a new case should
situation to enhance the reliability of their pre- be created. The vectors encoded in the cases
dictions. are adapted using a reinforcement formula in
A detailed description of each step would re- which a relative similarity measure is used as
quire more space than is available in this paper; a scalar reward or reinforcement signal. The
however, a short description of the method fol- relative similarity measure RSM, given by
lows. The perceive step builds a set of four input (SM - SM1 ,.,) / (SM - SMI,.) quantifies how
vectors E i, one for each sensory input 1 de- similar the current environment configuration is
scribed earlier, which are matched against the to the environment configuration encoded by the
corresponding input vectors C ,, of the cases case relative to how similar the environment has
in the system's memory in the retrieve step. The been in previous utilizations of the case. In-
case similarity metric SM is based on the mean tuitively, if case matches the current situation
squared difference between each of the vector better than previous situations it was used in, itvaue C IN) of the kth case Ck over a trend- bte hnpeiu iutosi a sdii
values C I (i) is likely that the situation involves the very reg-
ing window 1c, and the vector values E .,,w (i) ularities that the case is beginning to capture;
of the environment E over a trending window of thus, it is worthwhile modifying the case in the
a given length IE: direction of the current situation. Alternatively,

if the match is not quite as good, the case should
not be modified because that will take it away

4 min(tE-p,tc) (E ,,(i + p) - C 1 ,. (i)) 2  from the regularity it was converging towards.

1w (mi-•'E " p, Wc -E Finally, if the current situation is a very bad fit
=1 i=o -Pto the case, it makes more sense to create a new

The match window p b,, is calculated using a case to represent what is probably a new class of
reverse sweep over the time axis p similar to a situations.
convolution process to find the relative position Thus, if the RSM is below a certain threshold
(represented by min(lE - P, IC)) that matches (0.1 in this paper), the input and output case vec-
best. The best matching case Ck b-, satisfying tors are updated using a gradientdescent formula
the equation: based on the similarity measure:

{kb t,,pb., Imin(SM(E, Ck, p)), Vk, O < p < Ic} Ch'(i) =
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amin(IE - p,l )(Ej(i + p) - C; b(i)), terns or regularities detected in perceived envi-
0 < i < 1_ ronment. Our learning methods are also similar

to Sutton (1990), whose system uses a trial-and-
where the constant a determines the learning rate error reinforcement learning strategy to develop
(0.5 in this paper). In the adapt and learn steps, a world model and to plan optimal routes using
the overlap factor min(lm P pfco of C) is used to the evolving world model. Unlike this system,
attenuate the modification of early values within however, SINS does not need to be trained on
the case which contribute more to the selection the same world many times, nor are the results of
of the current case. its learning specific to a particular world, initial

Since the reinforcement formula is based on a location, or destination location.
relative similarity measure, the overall effect
of the learning process is to cause the cases to 3 Evaluation
converge on stable associations between envi-
ronment configurations and schema parameters. The methods presented above have been eval-
Stable associations represent regularities in the uated using extensive simulations across a va-
world that have been identified by the system riety of different types of environment, perfor-
through its experience, and provide the predic- mance criteria, and system configurations. The
tive power necessary to navigate in future situ- objective of these experiments is to measure
ations. The assumption behind this method is qualitatively and quantitatively improvement of
that the interaction between the system and the the navigation performance of SINS (the "adap-
environment can be characterized by a finite set tive system"), and to compare this performance
of causal patterns or associations between the against a non-learning schema-based reactive
sensory inputs and the actions performed by the system (the "static system") and a system that
system. The method allows the system to learn changes the schema parameter values randomly
these causal patterns and to use them to modify after every control interval (the "random sys-
its actions by updating its schema parameters as tern"). Rather than simply measure the improve-
appropriate, ment in performance in SINS by some given

Genetic algorithms may also be used to mod- metric such as "speedup", we were interested in

ify schema parameters in a given environment systematically evaluating the effects of various

(Pearce, Arkin, & Ram, 1992). However, while design decisions on the performance of the sys-

this approach is useful in the initial design of tern across a variety of metrics in different types

the navigation system, it cannot change schema of environments. To achieve this, we designed
parameters during navigation when the system several experiments, which can be grouped into
faces environments that are significantly differ- four sets as discussed below.

ent from the environments used in the training 3.1 Experiment Design
phase of the genetic algorithm. Another ap-
proach to self-organizing adaptive control is that The systems were tested on randomly generated
of Verschure, Kr~se, & Pfeifer (1992), in which environments consisting of rectangular bounded
a neural network is used to learn how to associate worlds. Each environment contains circular ob-
conditional stimulus to unconditional responses. stacles, a start location, and a destination loca-
Although their system and ours are both self- tion, as shown in figure 2. Figure 4 shows an
improving navigation systems, there is a funda- actual run of the static and adaptive systems on
mental difference on how the performance of the one of the randomly generated worlds. The lo-
navigation task is improved. Their system im- cation, number and radius of the obstacles were
proves its navigation performance by learning randomly determined to create environments of
how to incorporate new input data (i.e., condi- varying amounts of clutter, defined as the ra-
tional stimulus) into an already working naviga- tio of free space to occupied space. We tested
tion system, while SINS improves its navigation the effect of three different parameters in the
performance by learning how to adapt the system SINS system: max-cases, the maximum num-
itself (i.e., the navigation module). Our system ber of cases that SINS is allowed to create; case-
does not rely on new sensory input, but on pat- length, 1c, representing the time window of a
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case; and control-interval, which determines up to 10 cases (max-cases = 10), each of case-
how often the schema parameters in the reactive length = 4. Adaptation occurred every control-
control module are adapted. interval = 4 steps. Figure 5 shows the results
We used six estimators to evaluate the navigation obtained for each estimator over the 200 worlds.
performance of the systems. These metrics were Each graph compares the performance on one
computed using a cumulative average over the estimator of each of the three systems, static,
test worlds to factor out the intrinsic differences random and adaptive, discussed above.
in difficulty of different worlds. Average number Experiment set 2: Effect of case parameters.
of worlds solved indicates in how many of the This set of experiments evaluated the effect
worlds posed tht system actually found a path to of two parameters of the case-based reasoning
the goal location. The optimum value is 100% component of the multistrategy, learning system,
since this would indicate that every world pre- that is, max-cases and case-length. control-
sented was successfully solved. Average steps interval was held constant at 4, while max-cases
indicates the average of number of steps that the was set to 10, 20, 40 and 80, and case-length was
robot takes to terminate each world; smaller val- set to 4, 6, 10 and 20. All these configurations of
ues indicate better performance. Average dis- SINS, and the static and random systems, were
tance indicates the total distance traveled per evaluated using all six estimators on 200 ran-
world on average; again, smaller values indicate domly generated worlds of 25% and 50% clutter.
better performance. Average actual distance The results are shown in figures 6 and 7.bettr prforanc. Arag pt i stanc

per world indicates the ratio of the total distance Experiment set 3: Effect of control inter-
traveled and the Euclidean distance between the val. This set of experiments evaluated the ef-
start and end points, averaged over the solved fect of the control-interval parameter, which de-
worlds. The optimal value is 1, but this is only termines how often the adaptation and learning
possible in a world without obstacles. Average module modifies the schema parameters of the
virtual collisions per world indicates the total reactive control module. max-cases and case-
number of times the robot came within a pre- length were held constant at 10 and 4, respec-
defined distance of an obstacle. Finally, average tively, while control-interval was set to 4, 8, 12
timeper world indicates the total time the system and 16. All systems were evaluated using all six
takes to execute a world on average, estimators on 200 randomly generated worlds of

The data for the estimators was obtained after 50% clutter. The results are shown in figure 8.

the systems terminated each world. This was Experiment set 4: Effect of environmental
to ensure that we were consistently measuring change. This set of experiments was designed
the effect of learning across experiences rather to evaluate the effect of changing environmen-
than within a single experience (which is less tal characteristics, and to evaluate the ability of
significant on worlds of this size anyway). The the systems to adapt to new environments and
execution is terminated when the navigation sys- learn new regularities. With max-cases set to
tem reaches its destination or when the number 10, 20,40 and 80, case-length set to 4,6 and 10,
of steps reaches an upper limit (3000 in the cur- and control-interval set to 4, we presented the
rent evaluation). The latter condition guarantees systems with 200 randomly generated worlds of
termination since some worlds are unsolvable by 25% clutter followed by 200 randomly generated
one or both systems. worlds of 50% clutter. The results are shown in

In this paper, we discuss the results from the figure 9.

following sets of experiments: 3.2 Discussion of Experimental Results

Experiment set 1: Effect of the multistrategy The results in figures 5 through 9 show that SINS
learning method. We first evaluated the effect does indeed perform significantly better than its
of our multistrategy case-based and reinforce- non-learning counterpart. To obtain a more de-
ment learning method by comparing the perfor- tailed insight into the nature of the improvement,
mance of the SINS system against the static and let us discuss the experimental results in more
random systems. SINS was allowed to learn detail.
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Figure 4: Sample runs of the static and adaptive systems on a randomly generated world. The system starts at the filled
box (towards the lower right side of the world) and tries to navigate to the unfilled box. The figure on the left shows
the static system. On the right, the adaptive system has learned to "balloon" around the obstacles, temporarily moving
away from the goal, and then to "squeeze" through the obstacles (towards the end of the path) and shoot towards the
goal. The graphs at the top of the figures plot the values of the schema parameters over the duration of the run.

Experiment set 1: Effect of the multistrategy motor action outweighs the time required to se-
learning method. Figure 5 shows the results lect the action, the time estimator is less critical
obtained for each estimator over the 200 worlds, than the distance, steps, and solved worlds esti-
As shown in the graphs, SINS performed bet- mators. Furthermore, as discussed below, bet-
ter than the other systems with respect to five ter case organization methods should reduce the
out of the six estimators. Figure 10 shows the time overhead significantly.
final improvement in the system after all the The experiments also demonstrate an somewhat
worlds. SINS successfully navigates 93% of unexpected result: the number of worlds solved
the worlds, a 541% improvement over the non- by the navigation system is increased by chang-
learning system, with 22% fewer virtual colli- ing the values of the schema parameters even in
sions. Although the non-learning system was a random fashion, although the random changes
39% faster, the paths it found required over 4 lead to greater distances travelled. This may be
times as many steps. On average, SINS' solu- due to the fact that random changes can get the
tion paths were 25% shorter and required 76% system out of "local minima" situations in which
fewer steps, an impressive improvement over a the current settings of its parameters are inade-
reactive control method which is already good quate. However, consistent changes (i.e., those
at navigation. that follow the "regularities" captured by our

The average time per world was the only esti- method) lead to better performance than random

mator in which the self-improving system per- changes alone.

formed worse. The reason for this behavior is Experiment set 2: Effect of case parameters.
that the case retrieval process is very time con- All configurations of the SINS system navigated
suming. However, since in the physical world successfully in a larger percentage of the test
the time required for physical execution of a worlds than the static system. Regardless of the
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static random I adaptive
Percentage of worlds solved 14.5% 41.5% 93%
Average steps per world 2624T 2W.8 618.4
Average distance per world B35. - 3696 -261.2actual
Average atl distance 8.6 17.1 6.4
Average virtual collisions 46.1 26.4 35.7
Average time per world, ms 2947.8 2352.5 1487.3

Figure 10: Final performance results.

max-cases and case-length parameters, SINS of worlds solved was obtained with control-
could solve most of the 25% cluttered worlds interval set to 12 and 4, respectively. For
(as compared with 55% in the static system) and low control-interval values, we expect poorer
about 90% of the 50% cluttered worlds (as com- performance because environment classification
pared with 15% in the static system). Although it cannot occur reliably. We also expect poorer per-
could be argued that an alternative set of schema formance for very high values because the sys-
parameters might lead to better performance in tern cannot adapt its schema parameters quickly
the static system, SINS would also start out with enough to respond to changes in the environ-
those same settings and improve even further ment. Other performance estimators also show
upon its initial performance. that control-interval = 12 is a good setting.
Our experiments revealed that, in both 25% and Larger control-intervals require less case re-
50% cluttered worlds, SINS needed about 40 trievals and thus improve average time; how-
worlds to learn enough to be able to perform suc- ever, this gets compensated by poorer perfor-
cessfully thereafter using 10 or 20 cases. How- mance on other estimators.
ever, with higher numbers of cases (40 and 80), Experiment set 4: Effect of environmental
it took more trials to learn the regularities in change. The results from these experiments
the environment. It appears that larger num- demonstrate the flexibility and adaptiveness of
bers of cases require more trials to train through the learning methods used in SINS. Regardless
trial-and-error reinforcement learning methods, of parameter settings, SINS continued to be able
and furthermore there is no appreciable improve- to navigate successfully despite a sudden change
ment in later performance, The case-length pa- in environmental clutter. It continued to solve
rameter did not have an appreciable effect on about 95% of the worlds presented to it, with
performance in the long run, except on the aver- only modest deterioration in steps, distance, vir-
age number of virtual collisions estimator which tual collisions and time in more cluttered envi-
showed the best results with case lengths of 4 and ronments. The performance of the static system,
10. in contrast, deteriorated in the more cluttered
As observed earlier in experiment set 1, SINS re- environment.
quires a time overhead for case-based reasoning Summary: These and other experiments show
and thus loses out on the average time estimator, the efficacy of the multistrategy adaptation and
Due to the nature of our current case retrieval learning methods used in SINS across a wide
algorithm, the time required increases linearly range of qualitative metrics, such as flexibility
with max-cases and with case-length. In 25% of the system, and quantitative metrics that mea-
cluttered worlds, values of 10 and 4, respec- sure performance. The results also indicate that
tively, for these parameters provide comparable a good configuration for practical applications is
performance. max-cases = 10, case-length = 4, and control-

Experiment set 3: Effect of control inter- interval = 12, although other settings might be
val. Although all settings resulted in improved chosen to optimize particular performance es-
performance through experience, the best and timators of interest. These values have been
worst performance in terms of average number determined empirically. Although the empirical
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results can be explained intuitively, more theo- motor information for robot navigation (Ram &
retical research is needed to analyze why these Santamarfa, 1993). There are still several unre-
particular values worked best. solved issues in this research. The case retrieval

process is very expensive and limits the number
4 Conclusions of cases that the system can handle without dete-

riorating the overall navigational performance,
We have presented a novel method for augment- leading to a kind of utility problem (Minton,
ing the performance of a reactive control system 1988). Our current solution to this problem is
that combines case-based reasoning for on-line to place an upper bound on the number of cases
parameter adaptation and reinforcement learning allowed in the system. A better solution would
for on-line case learning and adaptation. The be to develop a method for organization of cases
method is fully implemented in the SINS pro- in memory; however, conventional memory or-
gram, which has been evaluated through exten- ganization schemes used in case-based reason-
sive simulations. ing systems (see Kolodner, 1992) assume struc-

The power of the method derives from its abil- tured, nominal information rather than contin-

ity to capture common environmental configura- uous, time-varying, analog information of the
kind used in our cases.

tions, and regularities in the interaction between

the environment and the system, through an on- Another open issue is that of the nature of the reg-
line, adaptive process. The method adds con- ularities captured in the system's cases. While
siderably to the performance and flexibility of SINS' cases do enhance its performance, they
the underlying reactive control system because are not easy to interpret. Interpretation is de-
it allows the system to select and utilize dif- sirable, not only for the purpose of obtaining of
ferent behaviors (i.e., different sets of schema a deeper understanding of the methods, but also
parameter values) as appropriate for the particu- for possible integration of higher-level reasoning
lar situation at hand. SINS can be characterized and learning methods into the system.
as performing a kind of constructive representa- Despite these limitations, SINS is a complete and
tional change in which it constructs higher-level autonomous self-improving navigation system,
representations (cases) from low-level sensori- which can interact with its environment with-
motor representations (Ram, 1993). out user input and without any pre-programmed

In SINS, the perception-action task and the "domain knowledge" other than that implicit in
adaptation-learning task are integrated in a its reactive control schemas. As it performs its
tightly knit cycle, similar to the "anytime learn- task, it builds a library of experiences that help
ing" approach of Grefenstette & Ramsey (1992). it enhance its performance. Since the system is
Perception and action are required so that the always learning, it can cope with major environ-
system can explore its environment and detect mental changes as well as fine tune its navigation
regularities; they also, of course, form the basis module in static and specific environment situa-
of the underlying performance task, that of nav- tions.
igation. Adaptation and learning are required
to generalize these regularities and provide pre- References
dictive suggestions based on prior experience. Arkin, R.C., Motor Schema-Based Mobile
Both tasks occur simultaneously, progressively Robot Navigation, The International Journal of
improving the performance of the system while Robotics Research, 8(4):92-112, 1989.
allowing it to carry out its performance task with-
out needing to "stop and think." Brooks, R., A Robust Layered Control System

for a Mobile Robot, IEEE Journal of Robotics
In contrast to traditional case-based reasoning and Automation, RA-2(1):14-23, 1986.
methods which perform high-level reasoning in
discrete, symbolic problem domains, SINS is Chien, S.A., Gervasio, M.T., & DeJong, G.F.,
based on a new method for "continuous case- On Becoming Decreasingly Reactive: Learn-
based reasoning" in problem domains that in- ing to Deliberate Minimally, in Birnbaum, L. &
volve continuous information, such as sensori- Collins, G. (editors), Proceedings of the Eighth



275

International Workshop on Machine Learning, national Joint Conference on Artificial Intelli-
288-292, Chicago, IL, 1991. gence, 249-255, Milan, Italy, 1987.

Clark, R.J., Arkin, R.C., & Ram, A., Learning Payton, D., An Architecture for Reflexive Au-
Momentum: On-Line Performance Enhance- tonomous Vehicle Control, in Proceedings of the
ment for Reactive Systems, in Proceedings of IEEE Conference on Robotics and Automation,
the IEEE International Conference on Robotics 1838-1845, 1986.
and Automation, 111-116, Nice, France, 1992. Pearce, M., Arkin, R., & Ram, A., The Learning

Fikes, R.E., Hart, P.E., & Nilsson, N.J., Learning of Reactive Control Parameters through Genetic
and Executing Generalized Robot Plans. Artifi- Algorithms, In Proceedings of the IEEEIRSJ
cial Intelligence, 3:251-288, 1972. International Conference on Intelligent Robots

Grefenstette, J.J. & Ramsey, C.L. An Approach and Systems, 130-137, Raleigh, NC, 1992.

to Anytime Learning, in Sleeman, D. & Ed- Ram, A., Creative Conceptual Change, in Pro-
wards, P. (editors), Machine Learning: Proceed- ceedings of the Fifteenth Annual Conference
ings of the Ninth International Conference, 189- of the Cognitive Science Society, Boulder, CO,
195, Aberdeen, Scotland, 1992. 1993 (to appear).

Hammond, K.J. Case-Based Planning: Viewing Ram, A. & Santamarfa, J.C., Continuous Case-
Planning as a Memory Task, Academic Press, Based Reasoning, in Leake, D.B. (editor), Pro-
Boston, MA, 1989a. ceedings of the AAAI Workshop on Case-Based

Reasoning, Washington, DC, 1993 (to appear).Hammond, K.J. (editor), Proceedings of the Scroi .. tutr o ln n e

Second Case-Based Reasoning Workshop, Pen- Sacerdoti, E.D., A Structure for Plans and Be-

sacola Beach, FL, Morgan Kaufman, 1989b. havior, Technical Note 109, Stanford Research
Institute, Artificial Intelligence Center. Summa-

Kaelbling, L., An Architecture for Intelligent rized in P.R. Cohen & E.A. Feigenbaum's Hand-
Reactive Systems, Technical Note 400, SRI In- book of Al, Volume Ill, pages 541-550, 1975.
ternational, 1986. Segre, A.M., Machine Learning ofRobotAssem-

Kolodner, J.L. (editor), Proceedings of a Work- bly Plans, Kluwer Academic Publishers, Nor-
shop on Case-Based Reasoning, Clearwater well, MA, 1988.
Beach, FL, Morgan Kaufman, 1988. Sutton, R.S., Integrated Architectures for Learn-

Kolodner, J.L., Case-Based Reasoning, Morgan ing, Planning, and Reacting based on Approxi-
Kaufmann, San Mateo, CA, 1992 (in press). mating Dynamic Programming, in Proceedings

Minton, S., Learning Effective Search Control of the Seventh International Conference on Ma-

Knowledge: An Explanation-Based Approach, chine Learning, 216-224, Austin, TX, 1990.

PhD thesis, Technical Report CMU-CS-88-133, Sutton, R.S. (editor), Machine Learning, 8(3/4),
Carnegie-Mellon University, Computer Science special issue.on Reinforcement Learning, 1992.
Department, Pittsburgh, PA, 1988. Verschure, P.F.M.J., Krose, B.J.A., & Pfeifer,

Mitchell, T.M., Becoming Increasingly Reac- R., Distributed Adaptive Control: The Self-
tive, in Proceedings of the Eighth National Con- Organization of Structured Behavior. Robotics
ference on Artificial Intelligence, 1051-1058, and Autonomous Systems, 9:181-196, 1992.
Boston, MA, 1990. Watkins, C.J.C.H., Learning from Delayed Re-

Moorman, K. & Ram, A., A Case-Based Ap- wards, PhD thesis, University of Cambridge,
proach to Reactive Control for Autonomous England, 1089.
Robots, in Proceedings of the AAAI Fall Sympo- Whitehead, S.D. & Ballard, D.H., Active Per-
sium on Al for Real-World Autonomous Mobile ception and Reinforcement Learning, in Pro-
Robots, Cambridge, MA, 1992. ceedings of the Seventh International Confer-

Mostow, J. & Bhatnagar, N., FAILSAFE - ence on Machine Learning, 179-188, Austin,
A Floor Planner that uses EBG to Learn from TX, 1990.
its Failures, in Proceedings of the Tenth Inter-



A Machine Learning Approach To Document Understanding

F. Esposito, D. Malerba, G. Semeraro M. Pazzani

Dipartimento di Informatica Dept. of Information and Computer Science
Universiti degli Studi University of California

70126 Ban, Italy 92717 Irvine, CA

Abstract 1. Introduction

Document understanding denotes the process of The automatic classification and understanding

identification of logical components of a of multimedia documents are the fundamental

document and the subsequent extraction of tasks of an intelligent system for office

relationships between logical components. In automation, which aims at automatically storing,

this paper the possibility of learning recognition retrieving and interchanging multimedia office

rules for the identification of logical components documents. The system is currently developed

in a page layout is investigated. For this purpose, as a task of the workpackage AP (APplication

FOCL, a system that learns function-free Horn for automatic classification of documents) of the

clauses, has been employed and some problems INTREPID' (INnovative Techniques for

concerning both infinite recursion and the REcognition and ProcessIng of Documents)

convergence of the learning process have been project. According to the ODA/ODIF standard

discussed. Finally, a critic to the underlying (Horak, 1985), any document is characterized

independence assumption made by almost all by two different structures representing both its

systems that learn from examples is presented content and its internal organization: the layout

and the problem of contextual learning is defined. (or geometric) structure and the logical structure.

Some preliminary experimental results show The former associates the contentofthe document

that the definition of a dependence hierarchy with a hierarchy of layout objects such as text

between concepts can improve predictive lines, vertical/horizontal lines, graphic elements,

accuracy and decrease learning time for labelling photographic elements, columns, pages and so

problems like document understanding. an (Figure 1). The latter associates the content of
peyworoe s: lge the document with a hierarchy of logical objects
Key words:dcumentunderstanding,learning such as title, abstract, paragraphs, sections,

dependent concepts, contextual learning chapters, tables, figures, and so on (Figure 2).

1 The work in the INTREPID project is done within the framework of the ESPRIT programme and partly funded by the
Commission of theEuropean Communities. The following companies form the consortium: AEGElectrocom (D),CTA
(E), Nottingham Polytechnic (GB), Olivetti Systems & Networks (1), Pacer Systems Ltd. (GB), University of Bari (1),
University of Koblenz (D) and University of Naples (I).
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Figure 1. The hierarchical layout structure of Figure 2. The hierarchical logical structure of
a document a document

Each layout/logical object can be described among layout objects (layout-layout
by a set of attributes. For instance. layout objects relationships). An example of layout-layout
can be characterized by the type of content (text, relationship is the mutual position of two layout

graphics, etc.), their position in the page, their objects while the cross-reference of a caption to
shape, their dimension as well as the numerical a figure or the reading order of some parts of a
properties of their bitmaps, while logical document are two examples of logical-logical
attributes/can be described by thirtype (abstract, relationships. Finally, logical-layout
paragraph, etc.), some key-words contained in relationships between one or more elements of
the text (date, figure, etc.), their position. ' layout hierarchy and one element of the

Relationships among different objects are l ~gical hierarchy can be defined. These last are
also possible. Of course, the hierarchy in the the most interesting, since they allow us to
layout/logical structures defines some identify some logical components ofadocument

hierarchical relationships among objects of the without reading its content by means of an
same structure. However, other, and perhaps optical character recognizer (OCR) but using
more interesting, relationships exist among only layout (or geometrical) characteristics. For
logical objects (logical-logicalrelationships) and instance, in a standard English letter, the date is
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under the sender's address which is in turn in the foreach class of documents can be automatically
top left hand corner. Thus, this simple layout generated by means of an inductive learning
information can be profitably exploited by a process given a set of significant examples of
document management system to identify documents for each class (training set). The
specific portion of content. learning system, named RES, integrates a

By document analysis it is generally meant parametricclassifier, in particularFisher'slinear
the process of breaking down a document image discriminant functions, with a symbolic learning
into several blocks, which represent layout method based on the STAR methodology
components, without any knowledge regarding (Michalski, 1980). The main advantage of
the specific format (Tsujimoto and Asada, 1990). adopting a machine learning approach for the

On the contrary, the term document problem of document classification is a greater
understanding denotes the process of flexibility of the office documents management
identification of logical components of a system since it can be customized more quickly
document and the subsequent extraction of and easily. The success of this approach to
logical-logical relationships such as the reading document classification inducedus toinvestigate
order (Tang et al., 1991). When there exist the possibility of adopting the same approach for
logical-layout relationships due to a standard the problem of document understanding, that is
format of the document, then it is possible to recognizing logical components of a document.
understand a document by using only layout Given a set of documents whose page layouts
information extracted from the layout analysis have already been analyzed and assumed that
process. Furthermore, the identification of text the user-trainer has already labelled some layout
and picture regions is also important in order to components according to their meaning (e.g.,
limit the application of the OCR, so that only sender or receiver of a letter), the problem is that
information useful for storing and retrieval of learning some rules that allow the correct
purposes is read. Therefore, document analysis labelling of layout components to be performed.
always precedes the document understanding As said above, the problem of document
phase. Nevertheless, when several kinds of understanding can be strongly simplified when
documents have to be automatically handled, the class of documents has already been
document understanding becomes a difficult identified. Indeed, in this case we can more
process due to the different logical-layout easily define logical components for each class
relationships met in each kind of document. For of documents and we significantly reduce the
instance, letters from various companies will variability of training instances for this new
present different writing standards, so the learning problem. In spite of such a shrewdness,
identification of the sender or receiver could be the problem of learning rules for document
hard if only layout information were used. Thus, understanding is still more complex than the
an intermediate step becomes necessary: problem of learning recognition rules for
document classification, thatis the identification classifying documents. In fact, in document
of the particular class the document belongs to. understanding, concepts to learn refer to a part of
Once again, layout information could help to a document rather than to the whole document,
recognize the class of a document when there and since parts of documents may be related to
exists a definite set of relevant and invariant each other according to logical-logical
layout characteristics, the so-called page layout relationships, this leads to the problem of learning
signature. In (Esposito et al., 1990) a solution to mutually dependent concepts (or contextual
the problem of document classification has been rules). Most of the studies on supervised inductive
presented. More precisely, the classificationrules learning presented in the machine learning
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literature make the implicit assumption that 2. ARepresentation Language For Page
concepts are independent (independence Layout Description
assumption), and consequently, that training
instances are independent. Of course, traditional In the general inductive problem (Muggleton,
learning algorithms making the independence 1992), we are provided with:
assumption can still be exploitedforthe problem _ Lo: the language of observations
of document understanding by simply neglecting - LB: the language of background knowledge
logical-logical relationships, but it is ouropinion - L.: the language of hypotheses
this is not the correct way to solve the problem. _ a set of examples orobservations, O, described
Indeed, document understanding is a particular by using Lo
case of labelling problems, in which the correct _ some background knowledge, B, described
label can often be assigned toapart of a complex by means ofLB
object only by taking into account spatial and we want to find a hypothesis H, described in
relationships with other parts whose labels are the language L,, such that:
already known. Thus, we believe that by taking B A H I-O
into account concept dependencies it is possible Therefore, before describing how hypotheses,
to generate more accurate and simpler rules, Theref for d eng how ho esinc th leanin pardig is beter i.e. rules for document understanding, are
since the learning paradigm is a better generated, it is necessary to introduce the three
approximation of reality. When conce pt languages, Lo,~ LB and L.dependencies are intrinsically acyclic, the lagags Lo, La w
structure of concept dependencies can be In the application of document understanding,
represented by means of a directed acyclic graph. Lo is the language used to describe instances ofrepresented by gr ans decther ied acycc gph. different logical objects. Each instance is

teacheroritcan be inferredby meansofstatistical represented as a ground Horn clause in which

techniques. The former solution realizes a different constants represent different layout
combination of interactive concept learning and objects of one or more documents as well as the

supervised inductive learning, while the latter documents themselves. In particular, a subset of
the Horn clauses is used, namely linked Horn

provides a multistrategy learning methodology clauses ef 1987, nce itkallow n

that integrates numerical and symbolic learning. clauses (Helft, 1987), since it allows only
In the next section, a representation language meaningful hypotheses to be represented. The

In te nxt ectin, reresntaton angage set of extensionally defined predicates is reported
used to describe a page layout will be presented in Table I. A predicate is extensionally define

and the opportunity of introducing someI. A predicate is extensioaly defined

intensionally defined predicates in the when a list of tuples for which the predicate is

backgroundknowledge will be discussed. Section true is provided. Figure 3 shows an example of

3 is devoted to the problem of learning Horn page layout in which some blocks have been
clauses by means of a well-known learning labelled. There are five different logical objects,system: FOCL (Pazzani and Kibler, 1992). Some namely sender, receiver, logotype, reference
experimental results on the problem of lea1n2 ng number and date. Other blocks are purposely
rules for document understanding by means of unlabelledsincewearenotinterestedtorecognize
the traditional strategy are presented in section each part of the document. Obviously, each
twhile tr ionalem sa egyare n p esentedinsection document is a source of more than one instance
4, while the problem of learning dependencies of logical components. Therefore, we can write

between concepts together with results of the dognasmyondhor eawesanumbe
contextual learning strategy for document down as many groundHorn clauses as the number
contexstuadilearein straeg for dec ocum of layout objects in a page layout. In Figure 4 the
understanding are shown in section 5. description of the block sender of the document

is provided.
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Table I The language of hypotheses, L., generated
Predicates for the Page Layout Description by FOCL, is a subset of pure Prolog, in which

neither functions nor constants occur: Horn
Predicate Meaning clauses of L H are called function-free. As FOIL

logic .jype-sender(X)

logicqe-e.ceX) (Quinlan, 1990), FOCL adopts Prologs negation-
logicrype-logo(X) logical label of the as-failure rule (Clark, 1978) todefine the meaning
logictrz-ref(X)
logicype-d(X) layout object X of a negated predicate. A hypothesis is expressed
logi•c•qj-unsaged(X) as a collection of function-free Horn clauses
width-vey-veiy-nsll(X) having the same head. Such a collection is called
wif-Ver-snalln rule or predicate definition. FOCL allows
wifd-medium-smail( width of the layout predicates to be defined intensionally as well,
width-mediun(X) object X that is it provides a way to introduce some
width-raedimn-large(X)

wit-largex) inference rules as background knowledge to use
wid-h-vM-large 0 during the induction process.
Widdi-veiy-Vay-Iazge(Xm____________

beight-malest0) For the application of document
heighl--Vy-ve,y-smAll(X) understanding, we defined several inference rules
heigh-vay-amal(x)
height-mual(x) concerning the position of a block, the type of
height-medium-small(X) height of the layout alignment between blocks and the mutual

objectheight-medium-large position of blocks. As to the position of blocks,

height-large(X) a page was originally split in nine areas byheight-very-large(X)

height-very-very.large(X) discretizing the numerical coordinates of the
height-largest(X) centre of each block. However, some logical

,C.CxtI(X) components may be in different positions but intype-hor-lineM yexfth)ayutypo-picWl(X) type of the layout the same band (a band is a set of three contiguous

type-ver-line(X) object X positions in the page). In this case, information
rype-graphic(X)ryp-mix-,re(X) on the band may be more useful than the detailed

pzoftX. Y) layout object Y belongs information on the area, since it makes the
to document X generation of a rule easier. Therefore, we

position-top-left() introduced the following inference rules as
position-top(X) background knowledge:
position-top-right(X) top-horiz-band(X) -- position-top-left(X)
position-ltft(X) position of the layout top-horiz-band(X) M - position-top(X)
positiio-ceflhr(X) object X top-horiz-band(X) -- position-top-right(X)
position-fightQX)
position-boaom-lefi(X) central-horiz-band(X) -- position-left(X)
position-bouom(X) central-horiz-band(X) 4- posifion-center(X)
position-botom-right(X) central-horiz-band(X) -- position-right(X)
on op(x. Y) layout object X is on top bouom-horiz-band(X) 4- position-bouom-left(X)

of layout object Y bottom-horiz-band(X) 4- position-bouom(X)

bottom-horiz-band(X) 4 position-bottom-right(X)
to_right(X, Y) layout object X i to the left-vert-band(X) 4- position-top-left(X)

Sright of layout object Y' left-vert-band(X) -- position-left(X)

aligmd-only.-lft-col(X, Y) left-vert-band(X) 4 position-bouom-left(X)
aligned-only-right-col(X, Y) central-vert-band(X) position-top(X)
aligd-only.middle.col(X, dY)
6igned-botm.ms(X. Y) layout objects X and Y cenval-vert-band(X) 4 position-center(X)
aligned-o*iy-uppew-row(X, Y) are aligned central-vert-band(X) 4- position-bottom(X)
aligned-only-lower-row(X, Y) right-vert-band(X) 4- position-top-right(X)
aligned-only-middle-row(XY) right-vert-band(X) 4 position-right(X)
aligned-both-rows(X, Y) right-vert-band(X) - position-bottom-right(X)
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JL2 (JA~r)Iogicjtype-scnderI(x2) 4

logic-type-receiver(x3). logic jypC-unsigncd(x4).
Iogic...qW-logo(x5). logic.ype-date(x6), 1ogicjtype-ref(x7).
logicjrype-unsigncd~x8).logicjyeusgndx)

*M' _ ogcype-unsigicd(xlO),logicj-ype-unsigned(xl 1),

part-of(xl .x6), pan...of(xl ,x7). par~of(xl .x8), ar~of(x1 ,x9).

17im 6 (A*i) width-medium(x2), width-rnediwn-large(x3),
F A04W --n width-smallest(x4), width-mcdiurn(x5),

All width-mcdjumn-small(x6).width-medium-large(x7),
11 ________________ width-very-veiy-large(x8). width-very-vcry-large(x9).

is- 1-t. dwidth-mediwni-1rge(x10), width-smallcst(xl11),
-IOP". 16.height-rnedium-large(x2),hcight-small(x3),

ot" height-smallest(x4).hcight-very-sinal(x5),
height-vcry-very-small(x6), hcight-veiy-vcry-small(x7).

-14 1 LA L.w.0. '441 -setheight-sinallest(x8),height-large(x9).

* .in~~*in ~ ii ype-text(x2), typ-tecxt(x3), type-text(x4).
.1 INA" LVI ""- 1.ype-pictur(x5),type-tcxt(x6),type-tcxt(x7).

-. zyrpe-text(x8), qype-tet(x9), type-inixnzre(x 10),
AtIO rype-text(x 11), psition-top-left(x2), posifion-top(x3).

position-top-left(x4), posifioi-top-Iefxx5).
0"-tpositin-top-right(x6),positiasi-top(x7).

posiuon-center(x8),position-centar(x9).
position-bouom-right(x 10). position-botomn-Ieft(x 11),

X11 onjtop(x5,x8). onjtop(x6.x8). on~jop(x7,x8), onjtop(x9.x 10).
txojight(x2,x4),tojright(x5.x7).
aligncd-both-colunins(x2.x5). aligned-only-lower-row(x5.x7).
aligied-only-lefr-coI(x4,x7),aligncd-both-rows@x7,x6).
aligncd-only-right-col(x8.x9).aligncd-only-upper-row(x4.x),

Figure 3. Page layout of a document with aligned-onfly-left-col(x8ax11)
labelled blocks. Figure 4. Ground Horn clauses for the sender

We also defined the predicates aligned-by- of the layout in Figure 3.
column and aligned-by-row as follows: afigned-only-mniddle-row(X,Y)
aligned-by-column(XY) 4-aligned-only-left-col(X,Y) afigned-middle-row(X,Y) 4- aligned-both-rows(X,Y)
aligned-by-colunn(X,Y) .- afigned-upper-row(X,Y)4-- algd-only-ujper-row(X,Y)

aligned-only-middle-col(X,Y) afigned-upper-row(X,Y) 4- afigned-both-rows(XY)
afigned-by-columnn(Y)~ - lged-only-right-col(XY) aligiwd-1ower-row(X,Y)4- afigrd-ordy-lower-row(XY)
afigned-by-column(X,Y) +-aligned-both-columns(X,Y) aligned-lower-row(X,Y) 4- aligned-both-rows(X,Y)
aligned-by-row(X,Y) 4-aligned-only-upper-row(X,Y) It is worthwhile to notice that aligned-by-
afigned-by-row(X,Y) 4-aligned-only-rniddle-row(X,Y) column (X,Y) means that X and Y are aligned by
aligned-by-row(X,Y) 4-afigned-only-lower-row(X,Y) column and X is above Y. However, this does
aligned-by-row(X,Y) 4-afigned-both-rows(X,Y) not imply that X is onjtop Y, since the literal
Moreover it is possible to define the following on_top(X,Y) states that X is above y and their
predicates: distance is less than 50 points on the vertical
afigned-left-col(X,Y) 4-afiged-only-left-col(XY) axis. Thus, it makes sense to define the predicate
aligned-left-col(XY) ~-afiged-both-columns(X,Y) above as follows:
aligned-middle-col(XY) 4- aoeXY -oW(Y

aligned-only-middle-col(X,Y) above(X,Y) +- onjop(X-by)clmnX
aligned-miiddle-co(XY)~ -afigned-both-columns(X,Y) Analogously we aindeficluned(heprdiat
afigned-right-col(X,Y) 4-aliged-only-right-MM(XY)Anlguyw deidth price
aligned-right-col(X,Y) 4-aligned-both-columns(XY) to_thie right side as follows:
aligned-middle-row(X,Y) 4-tq-thC-righ~side(X,Y) +- to-Tight(XY)
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tojthe-righLside(X,Y) +- aligned-by-row(X,Y) is q(x) appears in the head of another clause

Horn clauses allow recursion to be represented whose body contains q(x):
as well. Recursion can be quite useful for the q(x) +- p(x), r(x) p(x) +- q(x), s(x).
application of document understanding. For In tailrecursion, the computation ofafunction
instance, let us consider the portion of layout has already been completed when the axiomatic
show in Figure 5. For some reason, it happened level is reached. An example of tail recursion is
that the logical component sender has been given by the following definition of the Prolog
fragmented into several layout blocks, but the predicate reverse:
fragment 4 can be easily recognized since it is reverse(X,Y) - reverse l(X,Fl,Y)
above a block of type picture. If recursive reversel(flXX)
definitions are used, then we can easily label reversel(I[AX],YZ) +- eversel(X,[AIYIZ)
blocks 1,2 and 4 by means of the following rule: which is more efficient than the classical direct-

sender(X) -- above(X,Y), type-picture(Y) recursive definition:
sender(X) +- ontop:MY), sender(Y). reverse([],fl)

Any other rule for the recognition of blocks reverse([ALX],Y) +- reverse(X,Z), append(Z,[A],Y).

sender would be more complex, and, in out In fact, tail-recursion generally uses memory
opinion, sometimes less accurate than that given more efficiently than direct recursion and
above. However, recursion should be used with therefore it would be better to learn, when
caution: it is necessary to check the existence of possible, tail-recursive definitions. However,
a termination condition in all cases in order to this means that new predicates, which were not
avoid infinite recursicn. For instance, the present in the original definition, have to be

recursive rule: generated (e.g., reversel), thus the problem is
logicjype-ref(X) - to_therighLside(X,Y), further complicated but the solution lies in

tojthe.righLtside(Z,Y), constructive induction.
logictype-ref(Z), For the application of document
afigned-upper-row(X,W) understanding, direct recursion is the most useful

logictype-ref width-small(X), form of recursion we need, even if in learningcentral-vert-band(X dependent concepts indirect recursion is also

can cause infinite recursion since X and Z can be depend e ne indoet ion is aldesirable. We use an option of FOCL that
bound to the same layout block, implements a very simple technique to prevent

There are several types of recursion. In direct infinitely recursive clauses. In particular, when
recursion, like the previous example, the same a recursive literal p(Y) is added to the body of a
literal appears both in the head and in the body of clause whose head is p(X), the literal not(X=Y)
a clause. In indirect (or mutual) recursion, a is added as well. This technique is better than
predicate p(x) in the body of aclause whose head that implemented in mFOIL (Dzeroski and

(Ix -=t-, Bratko, 1992), but less sophisticated than that
-(,,,,, " reported in (Quinlan, 1990) for FOIL.

25V Zfw)•, 3. An Algorithm That Learns Horn
-,. .t, Clauses: FOCL

_1_ .9 (ygr,,) FOCL (Pazzani and Kibler, 1992) is an extension
9 of FOIL (Quinlan, 1990) in several aspects. As

Figure S. The problem offragmentation in page FOIL, it implements a separate-and-conquer
layout.
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strategy to learn a rule. Given a set of positive a hilUclimbing search strategy to findlocalrather
and negative instances of a concept p(X1, X2, ..., than global maxima. For instance, the following
X.) to learn, FOCL starts with the initial clause:
hypotheses: logic-type-sender(X) +- above(X,Y), type-pictu(Y

P(XV, X2 ..... X) -- that allows several logical objects of type sender
whose body is empty and repeatedly adds a new to be recognized, cannot be generated without
literal q(Y1, Y2' ... , Yk) until the clause covers the introduction of cliches, since the predicate
only positive instances. Given a clause: above(XY) has a very small positive information

p(x,, X2 ..... X) p,-- ,Z2, .... z) gain and FOCL prefers other literals to that. In

where cp(Z 1, Z2, .. Z,,) denotos a conjunction of this case, it is the type of the block below a sender

literals, a tuple is a value assignment for the to discriminate a sender from any other kind of

variables X1, X21 ..... X, Z1, Z2, .... Z m such that logical object, but unfortunately, throwing out

the clause is satisfied. In particular the tuple is the literal above(X,Y), prevents the learning

positive/negative if the value assignment for the system from discovering such a discriminant

variables in the head coincides with a positive/ information. By introducing a relational clichi

negative instance of the predicate p(X,, X2 ... ' in which FOCL is said to test the couples of

X). Tne addition of a literal q(Y,, Y 2 ."" Yl,) to literals:

the body of an inconsistent clause may change above(X,Y), q(Y,. Y2, .... Yk)

the set of tuples covered by the clause and, the above inconvenience is solved, but the search
consequently, the proportion of positive and space to explore becomes wider.
negative tuples in such a set. Among all possible
literals that can be added to a clause, that one 4. Experimental Results
maximizing an information theoretic heuristic,
called information gain, is selected. In fact, a In section 2, a set of inference rules that form the
positive information gain means that the background knowledge has been defined.
proportion of positive tuples with respect to the However, the utility of these rules has to be
set of covered tuples is increased by adding a evaluated empirically. For this reason, we
given literal to the clause. The information gain considered a set of 30 single page documents,
can be computed for predicates defined both namely copies of letters sent by Olivetti. For
extensionally and intensionally. When a partial, each experiment, this set was randomly split into
possibly incorrect, intensional definition of the two subsets according to the following criterion:
concept to learn is provided, FOCL uses the - 20 documents for the training set
informationgainmetricinordertooperationalize - 10 documents for the test set.
the concept description as in explanation-based There are five concepts to learn, namely
learning. However, in our application to sender of the letter, receiver, logotype, reference
document understanding such a potential is not number and date (other concepts, such as body
exploited. of the letter or signature will be considered in

Another characteristic that distinguishes future experiments). Obviously, not all blocks
FOCL from FOIL is the availability of relatiozal are instances of one of these concepts, that is
clichgs that suggests potentially useful there are some unlabelled blocks that we are not
combinations of predicates to test while interested to classify. Moreover, there might be
generating a clause of a predicate definition more than one block with the same label in a
(Silverstein and Pazzani, 194,1). In this way, document, since some logical components might
clichCs provide a form of look-ahead that tries to have been fragmented into several layout blocks
overcome the problem of horizon effect leading
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that the layout analysis was not able to group possible to note that the introduction of the
together. background knowledge did not significantly

In the first experimentation no background improve the predictive accuracy of the final
knowledge was used during the generalization rules since the difference is only .2% better than
process. Six different experiments were the basic case, while the number of the tested
organized by randomly selecting the documents literals varies from 36% to 300% more than that
for the training and test sets. Results for each for the basic case.
experiment are reported in Table II, where the An the third experimentation two clichis were
entries n/m of each experiment report the number introduced, namely the ONTOP clichi for the
of commission (n) and omission (m) errors for pairs of literals
each rule. The last column of the table reports the onJop(X,Y), q(Y1,Y2, Y... Y)
average of the error rates for each experiment in which q is a predicate defined either
computedas the sum of commission and omission extensionally or intensionally and at least one of
errors divided by the number of logical the variables Y. is in the set (X,Y}, and the
components in the test set for a given class. The TORIGHT clich6 that tested all pairs of literals
TOTAL average erroris calculatedas the average tojight(XY), q(Y,, Y2, ..., Y).
ofthe TOTAL errors foreach experiment, divided By looking at the results reported in Table IV, it
by the number of logical components (including is possible to observe that the introduction of
unlabelled blocks). The entry "tot. cost" for each clichds did not improve significantly the accuracy
experimentconcernsthenumberoftestedliterals, with respect to the basic case (no background
namely those involving intensionally and knowledge and no cliches). Strangely, it seems
extensionally defined predicates, as well as the that by enlarging the search space helps to learn
pairs of literals tested with cliches. Since in this betterrules forsome class, such as ref, but it leads
first experimentation neither background the system to consider wrong hypotheses for
knowledge nor relational clichds were used, the other concepts, such as date.
reported numbers refer to the number of literals In another experimentation (see Table V)
involving only extensionally defined predicates. both the background knowledge and four cliches

Table Ill summarizes results concerning the were introduced. In particular, in addition to
second experimentation in which the background ONTOPandTORIGHT, othertwocichis were
knowledge is used. The structure of the table is introduced, namely ABOVE and
the same as that of Table II, but in this case the TOTHERIGHTSIDE that allow for testing
total cost includes the numberof literals involving pairs of literals in which the first literal contains
intensionally defined predicates as well. It is the intensionally defined predicates above and

Table II Table mI
Results of the first experimentation: Results of the second experimentation:

basic case basic case + BK
mleqep 1 2 3 4 5 6 kv.l ekiqp 1 2 3 4 5 6 av.m

1090 0j W 0/ 0M 0 OiD a.0% kvg 0) 00 00 00D Q 00 a.0%

smder 00 Md O/n 010 9 OA 14.1% acaft 0)D On 0 0/0 019 Oi 14.1%

S0)0 210 O1 01 O 3/0 002 1 69% ref 00 1)2 on 0)0 .N 00 10.0%

dM 0,2 L0 CM 042 62 2 25.4% da 1M2 00 00 012 513 29 2.1 %

.Ocxdv- 2/1 Sn 0) 3,2 3u5 2/3 4m1 gw 3/i 211 0a 2n/ w 21 3&1 %

TOTAL 2/3 3W2 0W2 3/4 12/16 4/10 3.3% TOTAL 4/3 314 0/2 213 10/17 44 L81S

Wr. cast 554 2924 6787 7217 5560 5113 33145 Us.ca 9014 750 10693 9547 6457 699 51529
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to_therighi :side respectively. In this biased towards the introduction of new variables

experimentation the global results worsen rather than towards the discriminatory power of

(average error rate = 8.5) and for one training set a literal. For instance, in a run we observed that

FOCL was not able to generate a complete and the system preferred the pair of literals:

consistent rule for the concept date after almost to-the-right-side(X. Y), aligned-upper-row(Z, Y)
4 hours of CPU time on a SUN station 4/25. covering34/36positivetuplesand38/79negative
Indeed, FOCL preferred to introduce predicates tuples (gain 67.0), rather than the literals:

with new variables (more than 10), so enormously to-right(X, Y), logic_type-logo(Y)
widening the search space at each step without that covered 21/25 positive tuples and 1/42

really improving consistency. The existence of a negative tuples (gain 62.7). A similar problem
simpler and consistent rule is guaranteed by the on the gain function used in ID3 for the selection
fact that in the previous experiments with only 2 of the next attribute to test has also been noticed
clichis FOCL always converged towards a by Fayyad in the induction of decision trees for
solution. A way to force FOCL to converge multiple concept learning (Fayyad, 1991).
towards a simpler solution than that it is looking Since in section 2 the generation of recursive

for is to define a limit on the maximum number rules has been claimed useful for the problem of
of new variables that can be introduced in arule. document understanding, we also tried to
However, this is simply a trick to bypass the introduce recursion in the learning process. Table

problem of divergence, but the true problem is in VI summarizes the experimental results, which
the information gain function that guides the would be probably better than those shown in
hill-climbing search. Indeed, this heuristic seems Table V had not the concept date led to problems

Table IV of non convergence of the learning process and
Results of the third experimentation: infinite recursion. In fact, in one case FOCL did

basic case + two cliches not generate any rule after 4 hours of CPU time,

-d~lv ca.~ t 3licheswhile in another it generated the following rule:

- -•- - - - -M logic Dtype-date(X) +- to therightside(Y, X),
Om GO Go o Go o o-to the_righLside(Z,Y),

ao 0o 0 VI o0 On n ,14.1% above(X, W), heigkt-smallest(W),
I , O Mi Wn Le Ge 0o Z% _-to.right(Y, X).

W A0 GO • o•66 logic type-date(X) m - totheright_side(Y, X),
- - - 36%(X = Y), logicrype-date(Y).

.• z .n o • -s. logicype-date(X) to-he.right_side(Y,X),
TOTAL 3W3 0I / 415 9W16 1io 3.0% to the~jight.side(Z,Y),

M Wd 10428 636 3421 10695 5979 8212 52371

Table V Table VI

Results of the fourth experiment: Results of the fifth experimentation:

basic case + 4 cliches + BK basic case + 4 cliches + BK + recursion

- -------------- - ndMp 1 2 3 A 5 6 aV. CU=W
rup 1 2 3 4 $ 6 av.eu'e

W60 O GO GO GO 0M W O 0.0% i03 00 0O WO GO G 0.0 0.%

ef GNO 0I 0/1 3.0 M00 15. % • ld" OO W01 an 7DO 9M 00 15A%

dew O 3,o0 aO 4o0 7n3 -- 273% d-m of 2z 6.) 71" 4- 3%

Slie 1 n J in ze 3/m WI 2o.0 f W 200 Wn 2/1 W0 3/4 Wj 22.0%

TOTAL 1/1 M 23 11-2 0 1914 09 8.5U TOTAL 2(1 00 Q5 140 19, 1/1I 10.3%

SOL CM 38957 381 42346 31370 1469 16617 IM075 to. am 3443 33403 29653 330 12635 16793 160M
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totherighLside(Z. W), such an assumption is reasonable, this is not
cewal-ven-band(W), generally true. For instance, if our aim is that ofabovc(X, V),
algnd-by-coumn(V, V). recognizing flowers and trees in a picture, we

logictype-date(X) 4-- the-right-sidc(Y, X), can try to learn the concepts independently. This
aligned-lower-row(Z, Y), means that we provide a learning system with
-,to-right(Y, X), instances of trees and flowers and we try to find
width-medium-small(X). those properties that,-haracterize them. However,
oogicgype-date(X) tojight(X, Y), -(X = Y). in this case we are deliberately neglecting all

logicdth -daw(), other properties that relate the two concepts,
which causes problems of infnmite recursion for such as their relative height (trees are taller thansome block, say B 1, which is not flowers), that can make easier the recognition
to_therightside of another block but it is itsel task in most of the cases. Astute readers will
toright another block, say B2. Indeed, in tse surely note that relationships between the
case the first four clauses fail to prove the goal concepts of trees and flowers do not characterize
logicas ype-date(BJ), while the last clause is the two concepts, but express a constraint

satisfiedift ishproven the goasclaulgic p between them. In fact, when the independencesatisfied if it is proven the goal logic_.t e-- Yp assumption is not made, the learning problem
date(B2). However, if the first clause cannot assump s not m , learning pro blem
explain this subgoal, the classifier finds the b e comes tha oin pripinte t
second clause in which the first literal is certainly cracter concept (or discie it
true, and then tries to prove again the goal fromother concepts)aswellasdependencies(or
logic type-date(BI), thus falling in infinite constraints) between concepts.recurion.A natural consequence of concept dependency
recursion. is that instances of dependent concepts are

5. Contextual Learning dependent themselves. This gives us an
immediate way to recognize those learning

5.1 The problem systems in which the independence assumption
is made: they allow for representing only
independent instances. For example, all relationalInductive learning is undoubtedly the paradigm databases used by the machine learning

that has been most widely investigated in machine databas es differe n e learning

learning. In particular, several studies have been community to test different learning systems
represent instances of concepts as (n+l)-tuples:

made on learning from examples and many -a,, a2,..., an' c>
learning systems have been developed. They where ai are attributes of the concept and c is the

differ in several aspects, such as the membership class (i.e. the name of the concept).
representation language used to represent In this case concept dependencies can only be
examples or observations as well as the expressed by allowing the domain of some
background knowledge and the hypotheses, the attribute a. to contain values of the domain of the
search strategy adopted to search in the space of class attribute c, but this is never done.
hypotheses defined by the representation Sometimes, the assumption that classes are

language, the amount and the type of background mutually exclusive is made explicit (Quinlan,

knowledge exploited during the learning process. 1986), while rarely the problem of instances that

However, there isanaspectthat joins mostof belong to different classes (e.g. patients that

the studies on learning from examples: the basic s y son to different
assuptin tat oncets re utully show symptoms common to two different

assumption that concepts are mutually diseases) is at least considered (Michalski, 1983).
independent. Even though in many applications Another clear example of the independence
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assumption can be found in the parametric does notdependon otherconcepts. Some authors
methods studied in statistical pattern recognition. name such concepts golden points (Baroglio and
Indeed, the formulation of these methods begins Giordana, 1992) but we prefer the term minimally
with the statement that each class is described by dependentconcepts. In some studies on inductive
a class distribution function, p(xi I xr C, 10), learning, the necessity to learn dependent
which gives the probability of adatum x, if it were concepts has been implicitly recognized. For
known to belong to class C (0. is simply a class instance, many studies on inductive logic
parameter vector that characterizes the class programming have reported Shapiro's problem
distribution in a parametric family of of learning two Prolog predicates, append and
distributions) (Hand, 1981). Trivially, in the reverse (Shapiro, 1981). Obviously, in all these
case of diseases that show common symptoms, studies the predicate reverse was learned only
class distribution functions are no longer adequate after that the predicate append had been learned.
and we need to consider the joint probability Forinstance,FOILcan learn thepredicate append
function p(xI xe C1,xIe C2 ... ,x e Cq,0). in 57.9 secs and then requires 29.0 secs for

It should be observed that the fact that learning the predicate reverse on a SUN station
instances are considered independent by all the 4/25. Not surprisingly, if the concepts am learned
methods of learning from examples does not independently, theruleproducedforthepredicate
mean that concepts are really independent, reverse is no longer correct and the time required
Indeed, independence is only an assumption, for learning is about 78.2 secs. This is another
that can be adequate or not according to the proof, if necessary, of the problems with accuracy
problem at hand. This means that it is also of hypothesis and efficiency of the learning
possible to learn dependencies between concepts process that the independence assumption can
even though instances show no explicit form of cause.
such dependencies. A typical example of learning
dependencies between concepts is met in the 5.2 Contextual problems in structural
area of statistical causal inference (Esposito et domains
al; 1993a).

When concept dependencies are intrinsically The problem of contextual learning has its
acyclic. In this case we can use dependence natural setting in structural domains, that is
hierarchies, that is directed acyclic graphs whose those domains in which concepts, observations
nodes are concepts to learn, to represent them and background knowledge can be effectively
(see Figure 6). The order in which concepts described by means of first-order logic rather
should be learned is completely defined by the than propositional calculus. The need to move to
dependence hierarchy, in particular the concepts a more powerful representation language is that
in the lowest level of a dependency hierarchy observations can be made up of several parts,
have to be learned first, since their definition thus the representation of one of such

Ck,3 observations consists of a number of attributes
concerning each subpart as well as of different
relationships between subparts.

Ck+l Ck+2 Relationships can be easily represented as

first-order logic predicates, but can hardly been
expressed by means of propositional calculus

c, C2  ... Ck (Quinlan, 1990). There are several examples of
Figure 6. An example ofdependence hierarchy structural domains presented in the machine

between concepts learning literature. Winston's arch problem
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(1970) and Michalski's problem of trains going asetL={11, ... J,) oflabels. Thedescription of O
east or west (1980) are just some of them. A is given by the description of each single unit in
common aspect to all these problems is that we terms of a set of attributes A={ a,, ..., ap) as well
wanttopredictaproperty, theclass, thatconcems as by the description of their relationships in
the objects as a whole. However, there are a terms of a set of relations R= r, .... rq .Theaim
number of problems in which rules that allow is that of associating the right label to some (or
some subparts of an object to be classified are all) units of 0. As said above, structured objects
sought. Many of such problems can be easily can be easily representedin first-order logic. For
found in the literature on computer vision. Here instance, by assuming that all relations in R are
are two of them: binary, we can represent 0 as a conjunction of
- Scene labelling problem: Given a picture (typically positive) literals involving binary

taken from a scene, say an office, it is required predicates:
to identify some objects in the scene. A low- a,(u,, c,,) A a1(U2, C,2) A ... Aa,(u3, C,.) A ... A a,(u3 , cF)
level computer vision system preprocess the A r,(u,, U2) A ... A ra(u,, U.)

picture, segments it and generates numerical where c. are constants representing values of the
or symbolic features for each segment as well attributes while ui are constants used to denote
as a description of how segments are related each object. Obviously, when labels are known,
(for instance, a segment is included into the above conjunction will be conjoint with as
another, or is adjacent to another). At this many literals l(u., I) as the number of labelkld
stage, it is necessary to associate each or units (here I is th label predicate and the constants
some segments with the name of the object in 1. are elements of L). Given a set of instances of1J

the scene they represent. The problem is a structured object 0 for which some (or all)
furtherly complicated by the fact that the units have been labelled, the learning problem is
picture of an object can be fragmented into that of learning rules that allow for labelling
several segments. their units. For instance, given a set of pictures of

- Edge orientation problem: Given a picture of an office in which we have labelled the segments
one or more objects, in which the edges of the with the name of some objects, such as chair,
objects have already been detected, it is desk and so on, we want to discover some rules
required to identify the orientation of each for labelling segments so that we will be able to
segment (or line) composing the edges. This recognize objects in a new picture.
information can help to reconstruct the 3-D Typically, in labelling problems it is not
scene and to understand how objects are convenient to learn concepts independently of
related in terms of 3-D features (for instance, each other since concepts are themselves strongly
an object is in front of another one). Typical related or mutually constrained. The
examples of line labels are: border, convex independence assumption on which most
and concave edge. learning algorithms relyis not generally adequate,
Otherproblems of this kind, which are named and it may lead to learn as many rules as the

labelling problems, can be found in the area of number of instances of a given concept.
speech recognition (identification of words or Luckily, in some labelling problems, it may
phonemes in an acoustic signal), fault diagnosis happen that concept dependencies are
as well as in the game theory. intrinsically acyclic and it is possible to define in

Generally speaking, in a labelling problem a quite natural way a dependence hierarchy. In
we are given a complex object 0 which can be thiscaseitis possible to start the learningprocess
decomposed in a set U={ u1, ... , u.) of units each with those concepts in the hierarchy that appear
of which can be named with a label lI taken from at the very bottom (minimally dependent
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concepts). The language of observations will all concepts in the dependence hierarchy have
contain alloperational (or extensionally defined) been learned.
predicates, a, and r. (ground literals), while the
language of hypotheses can be allowedtocontain 5.3 Application to document understanding
non-operational (or intensionally defined)
predicates as well. It is worthwhile to observe In previous experiments concepts have been
that minimally dependent concepts are learned assumed to be independent. In this section we
independently of each other, thus traditional will show some experimental results of the
learning systems that induce structural attempt to learn contextual rules. The dependence
descriptions can be effectively employed in this hierarchy between concepts is reportedin Figure
step. Generalizations of the learned concepts, 7. The reason for this definition can be partly
say C,, C2, .... Ck, will be a set of Horn clauses explained in terms of spatial reasoning. In fact,
of the type: when the logotype has been recognized, the

l(Xl1) +- _pX, Z1,, 7_...,Z*) recognition of the contiguous logical components
where q(X Z1, Z2, .. .,Z,) denotes a conjunction should be easier. In this case the contiguous
of literals concerning operational and non- logical components are sender (which is above
operational predicates in which X, Z1, Z2, ...., Z, the logotype) and ref which is to the right of the
are the only variables that occur. logotype. When the refhas been recognized then

When the minimallydependentconcepts have the dare, which is to its right, should be more
been learned, itis possible to learn those concepts easily recognized. Finally, when sender, ref and
that depend directly on CV, C2, ... , Cq, but now date are recognized the identification of the
the language of observations will contain the receiver should be easier. The reason for which
predicate 1 whose extensionaldefinition is given the logotype has been chosen as minimally
by all possible instantiations l(uj,l,), ir ( 1, 2, ... , dependentconceptis that the logotype is generally
k), used as positive examples in the previous the only block of type picture and, moreover, it
step. If the dependence hierarchy is well defined, is never (or rarely) fragmented or grouped with
the rules produced for concepts learned in this other blocks, thus it should be the simplest
step will contain at least one occurrence of the concept to learn. After having defined a
predicate 1. More precisely, if the concept C,, dependence hierarchy, FOCL was used to
directly depends on the concept C, and C2, we generate the rule forthe concept logotype by using
expect that the rule for Ck÷, will contain at least only the original set of predicates (extenrionally
one literal of the set I I(Y, 11), -, iXY, 1)) as well and intensionally defined). Then, we ran FOCL
as one literal of the set {I(Y,½), -,Il(Y, 12)). Such to generate the rules for the concepts sender and
an expectation is explained by the fact that refby using the original set ofpredicates together
concepts C1 and C2 are useful to explain or predict with the predicate
C', When previous conditions do not hold, it learneddescriptionof logic_type-logo
means that either the dependence hierarchy is previously learned. Then, FOCL is asked to
partly over-specific (some concept dependencies generate the rule for the concept date by using
do not occur in reality) or evidence in the the original predicates plus
observations is not enough to detect such learned description of logictype-logo,
dependencies (this is particularly true when Mdf
dependen&es are probabilistic rather than Z rv

deterministic) or the search strategy of the lOgSMPC . , date - rcever

learning system is simply limited in some way. = No.//
The multistep learning process continues until Figure7.Thehierarchyofconceptdependencies



learned_description _of logic_rype-sender and are really dependent, information on the context
learneddescription of logic type-ref. Finally, should help to learn more quickly.
FOCL learned the concept receiver from both Thirdly, sometimes, even if concepts arereally
the original predicates and all the learned dependent, FOCL is not able to capture such
predicates. dependencies du, to its own search strategy.

Experimental results are shown in Table VII. Actually, this is a problem of any traditional
First of all it should be noticed that the average learning system rather than a fault of FOCL. For
error rate is 6.4%, that is the lowest rate we got instance, this problem can be observed in FOIL
in all the experiments (about 2.0% less than the as well. Indeed, in order to express a dependence
basic case). Such an increase of predictive between two concepts, relations between
accuracy is a counter-intuitive result, since when variables representing different logical
a prediction of a rule depends on the prediction components have to be introduced in a clause (in
made by another rule it may happen that an error the case of document understanding, those
in the first rule to fire is propagated to the second relations are geometrical relations such as above,
(dependent) rule. Thus, the average errbr rate for on-top, etc.). Unfortunately, relations have quite
contextual rules should be higher than the error often a small or even negative information gain
rate forindependentrules. However, this problem if taken alone, so a greedy strategy like hill-
does not occur when concepts are really climbing will never consider them, at least in the
dependent and the dependence hierarchy is well early steps of the generation of a hypothesis. As
defined, since this errorpropagationeffect should a consequence, dependence between concepts
not occur frequently. Actually, this is what we will not be considered in the first steps of the
observed in our experiments. learning process and the final result will be

Secondly, we did not get problems of non- strongly influenced by the initial choices. As
convergence or infinite recursion, since already pointed out in section 3, such a problem
contextual rules are easier to learn. Indeed, the can be partially solved by means of either
total number of tested literals is 124,929 which determinate literals(Quinlan, 1991), as in FOIL
is less than the number of tested literals in the or relational clich6s as in FOCL. This is the main
other experiments in which 4 clichis were used reason for which we still preferred to use clich6s
to generate rules. Such a decrease of learning in this last experimentation even if previous
time is counter-intuitive as well since for some experimental results were unsatisfactory when
concepts the search space is wider and not smaller cliches were used.
due to the introduction of new predicates. The
rationale for these results is that, when concepts 6. Conclusions

Table VII
Results of the sixth experimentation: In this paper, the problem of document

contextual learning understanding has been approached by means of
inductive learning, in particular learning from

,k, 1 2 3 4 5 6 AV. em examples. This approach represents a novelty in
0 I WI WI WI WI I 0.0% the field of document understanding andpresents

ma0m OA 0/ on 00 09 0/I 14.1% the advantages of generality andeasycustomizing
rd 0 O 0/1 W 900 0M 15.4% of the document management system.

d 0000 3•,0 0M 70 0W 13.6% It is worthwhile to notice that in our approach
2 0 W In 2 W, 3/6 0/ . % the content of text blocks is not exploited to

TroAL M 3/3 24 300 19/13 0/4 6A4% recognize each single logical component. On the
22.5S 19371 19869 2941S 11733 16486 124929 contrary, the recognition of logical components
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based on the layout strucure of a document classification to the problem of document
allows an OCR system to read only some specific understanding. In fact, for each block it is possible
components of interest for a particular to define a set of numerical features describing
application. geometrical characteristics of a block as well as

Given a set of documents, training examples percentage ofblackpixels, numberoftransitions
are descriptions of some logical components of black-white, and so on. Such features can be
the documents. Therefore, the problem is that of appropiately managed by a parametric classifier,
learning recognition rules for subparts of the namely Fisher's linear discriminant functions,
logical structure of a documenL This problem is whose results after the training phase can be
a particular kind of labelling problem in which exploited in several ways. One way consists in.
subparts ofa complex object have to be labelled. mapping the classification results of the
The second novelty of this paper is that of discriminantfunctionsintoanewpredicate which
critizing the independence assumption made is in turn used by the system that learns Horn
by almost all learning systems and proposing a clauses. The other way is that of exploiting
new kamrg suaie, namedconiextual learning. information on the discriminauxy power of the
in which a dependence hierarchy of concepts is p classifier in order to define the order
exploited to define both the order in which in which concepts should be learned, starting
concepts should be learned and the prnper with those concepts that can be easily recognized.
observation language. Some preliminary results are presented in

The paper empircally compares the traitional (Esposito es al. 1993b).
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Abstract plies multistrateg learning to form struc-

This paper describes work in progrem tural models has been described in (Segmn,
wards a computer vision system, that learns 1993). This system, named GEST, describes
to recognis three.-dimensional nonrigid oh- structure using graphs. It learns models of

jects, and to locate and orent them in spae. nonrigid 2-D shapes from numerical exam-
Similarly to its two-dinumi2 gj pdecessor ples, without %Uer'a help. Using these mod-

GEST, the system uses graphs to describe el it recognises 2-D objects in video input
shape structure, and relies on a multistrat- and computes their pose in real time. GEST
egy aproc to kamr mod els of clseso 3- wadw well enug that is is bein used "

D shapes. A key new. component o this sys- an input device that allows one to control
tem is & constructive induction method that gr applications with hand gestures.
discovers geometric relations among pats in The suc of GEST in two dimension gives
& three-dimensional shape. incentive to research towards & multistrat-

Key words: Computer vision, graph. W learning system that operate in a thr*e
clustering, 3-D recognition. dimensional world: a GEST-3D. Its current

status is described in this paper. A key
new compoent of GEST3D is a repreten-

1 Introduction tation for 3-D geometric relations, that per-

Sof mits multiple types of psrts and r,

relations have bee used for more than 20 a & c i

years as structural models of shape (Barrow
et aL, 1972; Shapiro, 19W;, Nacknan, 1964).

Such models have ;no especially it 2 GEST D
in cmnputer vision, where r and GEST-3D will learn to recognise three-
inteorpetation are the main goals of model- dnmm d nonrigid objects from incom-
ing, and it is ikely that they will find use plete info-mation, and to etimate object's
an other shape related fields, esrh s image pose, that is the location and oientation
COpmsion or computer grphics, in 3-D space. This system will use a mul-

Construction of structural models requires tistrateg learning approach, analogous to
learning. A computer vision system that ap- that in GEST, to construct models of 3-
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D shape classes and to infer pose estima- Shape Instances
tors. The learning module of GEST-3D,
shown schematically in Figure 1, consists of _

three parts: Constructive Induction, Graph Constructive Induction
Learning, and Pose Learning. The firt part
uses a new constructive induction method Clustering
to discover symbolic relations in a set of ,_ ,,,
numerically represented instances of three-
dim-moa shapes. These relations am used
as the basic primitives in the graph lean-

ing part, which builds a structural model for Learning Graph Models
each das of 3-D shape. The third part
learns parametric functions for computing
pose, using statistical methods of robust es.
timation. The results of all three learning
parts are collected in a model library, which Learning Pose
by an object reconier to interpret three-
dimonsionaal shapes. E

Since graph representation is independent of
space dimension, the graph learning meth-
ods (Sepia, 1900) used in GMS are takenMoeLiry
with almost no changes. The two remaining
parts re basd an new research. The con-
structive induction approach used for learn-
ing 3-D relations is presented in the follow- Figur 1: L in GEST-3D
ing sections of this paper. Methods used for
learning three diesoA pose will bed-
scribed separately.

3 Constructive Induction of
Relations This constructive induction method exam-

ins a set of training shapes for natural
A geometric relation repre ts a range of groupings of part types and their relative
values of displacement and rotation between poses in par of nearby parts. Each iden-
parts, cc a relative pose. In a rigid object tifed group represents a geometric relation,
these values an nearly constant, but in a involving two parts and a distribution of pa-
nonrigid object they can vary between dif. rameters of their relative pose. A pair of
ferent object instances, and range of van- primitive parts joined by one of the discov-
atimo can be dierent for diferent pair of ered relations is then treated as a higher or-
parts. The goa] of the constructive induction der part, and the grouping process repeats,
process is to diver geometric relatios in givi rise to a hiemrarchy of parts and rela-
numerical data, and reprment them as sym- tions, similar to the hierarchy proposed in
bola. (Manr and Nishihara, 1978).
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4 Primitive Parts parameters that change with rigid transfor-
mations. This vector carries information re-

An instance of shape is initially represented lated to the part's pose, that is part's posi-

as a collection of primitive parts. These tion and orientation in space. In 2-D space

parts do not have to be mutually exclusive, pose consists of three values: two coordi-

that is some parts may overlap. The colec. nate. of position and the orientation angle.

tion of parts does not have to cover the en- In 3-D space pose has six dimensions: three

tire shape. The literature on shape provides position coordinates and three angles. If the

an abundance of algorithms and techniques pose of a part can be determined based on

for extracting parts from a two- or three- the form of the part, then the war vector is

dimensional shape. Some methods partition the pose. However, for parts with symme-

the Primary representation, e.g. a curve, sur- tries pose cannot be determined completely,
face, or volume into homogeneous regions, but it can be restricted to a number of do-

i.e. regions whose local properties are ap- grees of freedom (for continuous symmetries)

proximately constant. Other methods iden- or to a number of values (for discrete sym.

tify singularities, that is points or bound- metries). The approach described here con-

aies of the Primary representation which are siders only parts with continuous symmetries

unique within their neighborhood, such as such as line, or sphere. For such parts the

edges, corners, local extrema of curvuture, war vector contains the maximal number of

or critical points of a surface. Most of the parameters that constrain the pose.

published methods can be adapted to gener- Defnition: A representation by parts of
ate parts that satisfy the requirements of the shape S is a set of primitive parts P(S) -

approach described in this paper. This ap (A,,...}.
proach also allows one to mix topether parts The function P in this defnition stands for a
generated by different methods. method used to segment or to extract pats

Definition: A primitive part p is a triple form S. The repsetation P(S) should sat-
[tpe, inm, var], where We is a symbol from isfy the flowing properties:
a finite alphabet, sa and we are real valued
vectors, such that if T is a rigid transforma- 1. Invariance: Without presence ofne

tion, then T(p) = [type, in, T(vr)] a rigid ti should not
Th *p yblseiif h ea n change the representation. This means

interpretation for iaw and wsr vectors, ad that for any rigid transformation T,
it is used to distinguish puts geurated by P(S) =pifpi,...}impliesP(T(S))
dfeet extraction methods. The mw vwe. (T(pi),T(pa),...).

tor contains parameters that are invariant 2. Locality- A part description should
under rigid tr anrmatioas of the coordi- not be affected by shape changes out-
nate system. These parameters are specific side of the part's ~imediate neighbor.
to the type of a part, which also m ins hood.
constant under rigid transformations. Some
parts, such as a single point, have no invari- 3. Stability: The representation should
ant parameters, that is the maw vector have not be significantly affected by random
dimension wero. The ver vector consists of noise in the image. This means that
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if 1 and S wetwo noisy images of to a preset m imal level.
the "swe shape, then there cast" & The construction process repeats the follow-
one-to-on mapping between lUrgesub ing sequence of steps for each level:
sets of P(S1 ) and P(S6), where the
corm pondiag parts have identical tpe I. Cluster the is vectors of all parts at
symbols, and similar Mn and ve pa- level k, seprately for each part type,
rameters. and assign a unique label to each cliu-

ter.

5 Constructing New Parts 2. Asign to each part the label of its

All pairwias relatious might cotai useu nearest duster, or NIL if the nearest

informtion, but examining all such relations cluster is too far.

in a lare set o p ca be too otly. 3. Terminateifkisequaltoapreset max-
Therefoe, direct pairwise relations are - imrl level.
stricted only to pair of eaby parts. Pair
of nearby parts are also used to construct 4. Pind pairs of neighboring parts with
new parts, called co mposa parts, that are con NiM labels, and construct k + 1
treated just like the primitive parts. One level parts by applying a composition
can find binary relations between composite operation.
parts, and combie a pai of composite parts
into a new composite part. The result of the above construction proceis

One can think of a composite part as a root is a set of duster. isa vectors, grouped into

of a binary tree. All non-la nodes of this p& types. These dusters e saved in a Li-
tre me composite prts, and the eaves re bmy, which is later used by a recognition

primitive parts. This binay te defines the pwam to assign symbolic labels to prim-
composite part at its root and determinm itive parts, and to relations among parts.

the order of operations needed to construct The key elezzent of the construction proem
it. Depth of this tree &d mines the e dof is the compoSitw o operation (step 4) which

the part at the root. The lemvl o a primitive fomnns ne composite parts from part of ex-

pat is 0, a level-i part is Constructed from i parts. This operation is descibed in

a pair of primitive parts, two Wvel- p detail in the folowing section.

produce a level-2 part, and so on. The cur- 6 Composition of Parts
rent method combines only parts with equal
levels, so a composite pat at level n has 2? The composition operation is applied to an
primitive parts at its laves, i.e. it is a bal- order pair of paut. The resut of this op-
anced trm. This restriction is used only for station is a composite part repesented as
computational con en and it may be I"e, inv, v•r• .
relaxed in the future. The type of the result of composition is a

A composite part is represented the same string obtained by conc&tenating the types
way as a primitive part as of components, treated as strings. The is.
[typ,iv, 9wj. Composite parts are co- and se- vectot of the result are computed
st-ucted bottom-up, one level ast a time up from the ww vectors of the components. This
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operation depends on smmetr tye of the Table 1: Part types in 3-D
component parts. A symmetry type spedi-
fies a group of rigid transformations which do Part Symb. Ivarf Symm.
not change the part's appearance. For exam- Point P 3 3R
ple, an infinitely long cylinder has two con- Line L 4 lR+IT
tinuous symmetries: rotation around, and Plane S 3 1R+IT
translation along the axis. The approach Point on line PL 5 IR
proposed hen is restricted to parts with con- Line on plane LS 5 1T
tinuous symmetries. Discrete symmetries, F _Frame F 6 None
such as the symmetries of a cube may be
treated in future extensions.

The symmetry type of a part is a function ponent parts: Examples of definition of the

of the part type. The symmetry type of a compoition operation are given below for

primitive part has to be given defined for four cases from Table 2. The following nota-

each primitive part type. Symmetry t s tion is used in Laese examples: P(z) is the
ofcomposite pus am d etridy Come point specified by z, for symmetry types P
Pocsipion e prs i en damined 2y a- and PL. L(z) is the line and r(z) the unitposition rs in Tables 2 and 4. vector for symmetry types L, PL, and LS.

6.1 Parts in 3-D Space Case 1 Operands z,V, both of type P.

Table I lists six symmetry types used for Result z of type PL:
three-dimensional parts. The first two P(s) is the midpoint between P(z) and

columns show a geometric form with a given P(Y),thatis (P(z)+P(9)) -,(s) is the Line

type of symmetry, and pat's symbol. Third defined by P(z) and P(y).

column shows dimension of war. The sym- MV Dista b P(z) and P(j).

mietry t"akemaIios we shown in fourth Case 2 Operands: z of type P, I of type
column using a symbolic notation, when nR PL.
which means rotation about n axn, and nT Resulta of type F:
means an n-dimensional translation. Table w The frame origin is the midpoint be-
2 shows the symmetry type and the num- twee P(x) and P(v). The orientation of
bet of invariant parameters of the result of the first as is given by the unit vector
composition, 6w all combuiations of compo-
nent symmetry types. In most casm it - P(:) - P(l)
is possible to define the composition oper- IP(l)- -WI

at0ion in several equivalent ways, using dif.
fentexpfor the corn mputing inv and The remaining axes ae obtained by a
,er terms of the composition result from Gramm-Schmidt "oia : Let
the components parts. Th equivalence offi v(y) - (r(l) - GN then a unit vector
such aterutiv foul aktions means that the (',) = 0/101 defines the second a.•s; the
composition result for one of the formula- thirda ais u= 4x i.
tions contains enough information to coal- mv Dista•nce between P(z) and L(I), and
pute the composition result of any other for. signed distance from P(v) to the projection
mulation, without using data from the com- of P(s) on /(y).



Table 2: Part composition in 3-D Table 3: Part types in 2-D

am. Res. iniv Part Symb. Ivril Symm.
PP PL 1 Point P 2 IR
P,L F 1 Line L 2 1T
P,S PL 1 Point oline PL 3 None

PIPL F 2P~ts F 2
P,F F 3 Table 4: Part composition in 2-D
LL F 2
L,S F I PLI

L,PL, F 3 PP PL 1
L,LS F 3 PL PL I
L,F F 4 P,PL PL 2

SS LS -I L,L PL 1

$,PL. P 2 LPL, PL 2

S'is F- 2 PLPL PL 3

Sy F 3
PLPL F 4PL,LS F 4 six axes of z and I instead of r(y) to find

PLF F 5 the second axis. If this sum is 0 then any
-r-r-S - 4 subset od the axes can be used.

W, F um Six parameters of rigid transformation
FF F fromz toy.

6.2 Parts in 2-D Space.

Case 3 Operands: za,, both of type PL. Symmetry types in 2-D foim a subset of sym-
Result a of type F: metr" types in 3-D. This subset consists of

e Frame axes a computed as in Case 2, s mmetry types listed in Table 3.
using r(a) + r~y)instad ofr(;) to find the composition operation in 2-D is defined in
omnic 426S. Table 4. Each cas of 2-D conposition can

mvi Distance between P(z) and P(I), aGe be derived from a corresponding 3-D cae, as
betwmn r(x) and i, angle betwee v(p) and shown in the example below.
," (* defined as in Can 2), and ane between
the two planes defined by a& l throuh Case 5 Operands: zy, both of type PL in
P(z) and P(y) and vector r(zs), and ,(y). 2-D.
oc angle between to thme plane Result a of type PL:

var P(s) and L(s) rrmepond to the origin
Came 4 Operands: v, y, both of type F: and the first ais in Cae 3 above.
Reult a of type F: nv Distance between P(z) and P(y), and
wr Fvame am e computed as in Cae 1, the two angles between vectors r(z) and
using the sum of the unit vector frhm afl r(p), and the line through P(z) and P(y).
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"7 Ordering Pairs of Parts split into two dusters. This is an undesir-

The procedure fr m g t s able feature, since such a split is purely arti-
desriptionsSedr or ) retquires the st r -trl ficial. Split dusters can be merged using thedescriptions (Segen, 1990) requires the ar- floigcm~i~i•poeue

guments of binary relations to be ordered. follow consolidation procedure.

To order a pair of parts (xV) the follow- For each duster Ci form an inverted clus-
ing three-step procedure is used. If z and ter -Ci, then find a cluster C' in a set
y have different types then they are ordered C, + 1,A + 2 ....., which is nearest to -C,.
according to a lexicographic order of their An inverted duster -C is a cluster formed
types. If the types are identical, but the by revering the order of composition of el-
parts have different labels, then they are or- ements of C. In most cases such an opera-
dered by their labels. If the labels am the tion is a function of duster parameters, so it
same then an ordering function f(zl) is does not require reprocessing the duster el-
used. An ordering function must have the ements. If -Ci and C' are sufficiently close
following properties: then merge -C, into C', provide a pointer

from C, to C', and delete all dusters that

1. There isapartial order relation>de- point to C,. In addition, delete any cluster

fined on the range of f that is close to its own inverse.

If the above procedure is used then the label-
2. Generally, f(s, y) 6 f(y,z). ing Step is modified as follows: If a compos.

ite part is assigned to a duster a that points
3. For any rigid transformation T, to • duster b, then the part is inverted and

A(zV) > A(yz) implies f(TzTV) > receives the label o the duster b.
f(Ty, Tz). Of course this is satisfied
if f(z,y) = f(Ts,Ty). This property 8 Extracting Relations
ensures that the order specified by f is
invarint under rigid transformations. The lb o( a primitive part symbolically

describes an invariant property (unary re-
With the aid of f one orders parts z and y tion), such as sise or curvature. The label
as (z,y) iff(zlf) > I(lz), and vicevea. • composite part P describes a binay re-
If neither A(X,y) > l(X,z) am f(y,z) > lation between it. two componmt prts or
f(z, y), then parts cannot be ordered. children. It also describes a 4th-order rela-

tion among the part's grandchildren (if any),
An example of such a function for 2-D parts 8th-order relation among the great grand-
z and Y and symmetry types L, or PL, is the children, and so on, until it finally describes
signed angle between part orientations r(z) a 2'-ary relation oves a et of primitive parts.
and r(y).

After constructing the composite parts up
An example for 3-D parts with symmetry to a preset level, one retains only their I&-
type PL ias the first angle invariant ian 3 3 bel,, and the parent-child links. The result-
in Section 6.1. uig structure is a graph with labeled ver-

Using an ordering function preents a minor tices, that are grouped into layers according
problem. A natural duster that intersects to their depth. The leaves of the graph rep-
the hypersurfae f(z, y) = J(v. z) will be resemt the primitive parts; other vertices rep-



roset composite part.. This graph contains of Nonrigid Shapes. Proceedings of Con-
all the information about the shape, that is erence on Computer Vwsion and Pattern
used for recognition and interpretation. Recognition, pp. 597-602, San Diego, CA,

1989.
9 Final Remarks Segen, J., Graph clustering and model learn-

The relation constructor has bets pro- ing by data compression. Proceedins of the
grammed only for the 2-D case, (Segen, 1998; 7-th Int eriationL Conference on Machine
1989) and used as a module in the GEST sys- Learning, pp. 93-101, Austin, Texas, 1990.
tern. This implementation uses one type of Segen, J., GEST: A learning computer vision
& primitive part: a local extremum of cur- system that recognsies hand gestures. M.-
vature of the boundary of & planar shape. chine Lerning IV, R. S. Michalsl• and G.
This part has one invariant paramneter: the Tecuci (Eds.), Morgan Kaufmann, 1993.
curvature. The ver vector contains the posi- Shapiro, L. G., A structural model of shape.
tion of the extremal point, and the direction Iro, L. an Aattura of aneIEEE Trnaasctions on Pattern AU•yi eand
of the curve normal at this point, that is its Mfd~ne I, icg, PAMJ-2, pp. 111-126,
symmetry type is PL. The symmetry type 1980.
of all the composite parts derived from these
primitive. is also PL.

A first 3-D implementatiou will use corner-
like parts of symmetry type PL, that are ex-
tracted by a structural stereo vision system.
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Abstract There has been suabstantial additional work on

having a program learn specific patterns for
Althughpeope rly haviy onVI~iSI lWS chess (Berliner, 1992; Campbell, 1988; Flann,

during problem solving, it is non-trivial to in- che2; Levinson an S y er, 1991) Thee i
tegatethe ino mchie larnng.Thi paer 1992; Levinson and Snyder, 1991). There is

tegrate them into machine learning. This paper conflicting evidence as to whether or not ex-
reportsly and nturallync e visalcs pert game players learn to play solely by as-
moothly and naturally ion oritha for gaes sociating appropriate moves with key patterns
into a hierarchical decision algorithm for game on the board, but it is believed that
playing: two that interpret ptredrawn straight pattern recognition is an important part of a
lines on the board and a third that uses an as- number of different strategies exercised in ex-
sociative, hierarchical pattern database for pat- pen play (Holding, 1985). In Al, visual cues
tern recognit on. They have been integrated have previously demonstated their power as
into Hoyle a game learning program that explicit search control directives and as hand-
makes decisions ith a hierarchy of modules selected terms in an evaluation function
repreentmg individual rational and heurstic (Oelernter, 1963; Samuel, 1963). Learned vi-
agens. suP cues have also been derived from goal

Key words: machine learning, game play- states with a predicate calculus representation

ing, hierarchical decision algonthms, visual (Fawcett and Utgoff, 1991; Yee, et al., 1990).

cues, pattern recognition This paper integrates the pattern recognition

and the explanatory heuritics that experts use
1. Introduction into a pogram called Hoyle that learns to play

two-peson, perfect information, finite board
Since the early work of Chase and Simon, re. games against an external expert. As in the
searchers have noted that expert chess players schematic of Figure 1, whenever it is Hoyle's
retain thousands of patterns (Holding. 1985). turn to move, a hierarchy of remource-limited



procedures called Advisors is provided with Examples of useful knowledge include rec-
the current game state, the legal moves, and ommended openings and states from which a
any useful knowledge (described below) win is always achievable. Each item of useful
already acquired about the game. There are 22 knowledge is associated with at least one
heuristic Advisors in two tiers. The first tier learning algorithm. The learning methods for
sequentially attempts to compute a decision useful knowledge vary, and include explana-
based upon correct knowledge, shallow tion-based learning, induction, and deduction.
search, and simple inference, such as The learning algorithms are highly selective
Victory's "make a move that wins the contest about what they retain, may generalize, and
immediately." If no single decision is forth- may choose to discard previously acquired
coming, then the second tier collectively knowledge. When individual Advisors apply
makes many less reliable recommendations current useful knowledge to construct their
based upon narrow viewpoints, like Material's recommendations, they integrate these learn-
"maximize the number of your markers and ing strategies. Full details on Hoyle are avail-
minimize the number of your opponent's." able in (Epstein, 1992).
Based on the Advisors' responses, a simple
arithmetic vote selects a move that is for- Visual cues are integrated into Hoyle's deci-
warded to the game-playing algorithm for ex- sion-making process as new Advisors in the
ecution. second tier. These Advisors react to lines and

acou•ld useful knowledge clusters of markers without reasoning. This is
cifntdt 1 . legal . moves prompted by our observation that people guide

IVit~WY their play with frequently-observed patterns of

Shallow s"ach and pieces before they understand their signifi-
inebawdon cance. The distinction drawn here between
"Pret '"• thinking and seeing in game playing is an im-

n Iportant one. By "thinking" we mean the ma-
nipulation of symbolic data, such as "often-

YS nae used opening gambit;" by "seeing" we mean
move inference-free, explanation-free reaction to vi-

Heo•h,4JJc sual stimuli. The three Advisors described

Muamar Shod[ d .. I- Cove "•UO here are directed toward the construction of a
",-0- system that both uses and learns visual cues.

-1, ckboard . - They provide powerful performance gains and
I, promise a natural integration with learning.Voting This paper indicates how Hoyle, already a

multistrategy learning program, can integrate
Figure 1: How Hoyle makes decisions. knowledge about visual cues, and methods to

learn them.
The program learns from its experience to
make better decisions based on acquired 2. Using Predrawn Lines
useful knowledge. Useful knowledge is ex-
pected to be relevant to future play and may Morris games have been played for centuries
be correct in the full context of the game tree. throughout the world on boards similar to
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Figure 2: Some five men's morris states with white to move: (a) in the placing or the sliding

stage, (b) and (c) in the sliding stage.

those in Figure 2. For clarity, we distinguish stage, where a turn consists of sliding one's
carefully here between a game (a board, mark- marker along any line drawn on the game
ers, and a set of rules) and a contest (one board to an immediately adjacent empty posi-
complete experience at a game, from an tion. A marker may not jump over another
initially empty board to some state where the marker or be lifted frrim the board during a
rules terminate play). We refer to the slide. Three markers of the same color on im-
predrawn straight lines visible in Figure 2 mediately adjacent positions on a line form a
simply as lines. The intersection of two or mill. Each time a contestant constructs a mill,
more lines is a position. A position without a she captures (removes) one of the other con-
marker on it is said to be empty. Although the testant's markers that is not in a mill. Only if
program draws pictures like those in Figure 2 the other contestant's markers are all in mills,
for output, the internal, computational does she capture one from a mill. (There are
representation of any game board is a linear local variations that permit capture only dur-
list of position values (e.g., black or white or ing the sliding stage, permit hopping rather
blank) along with the identity of the mover than sliding when a contestant is reduced to
and whether the contest is in the placing or three near a contest's end, and so on.) The first
sliding stage. The program also makes contestant reduced to two markers, or unable
obvious representational transformations to to move, loses.
and from a two-dimensional array to
normalize computations for symmetry, but the 2.1 The Coverage algorithm
array has no meaningful role in move se-Iarra ha no eanngfWrol in ovese- When a marker is placed on any position on a
lection. The game definition includes Z list of When a r is place on any position on apredrawn lines and the positions on them. line, it is said to affect all the positions on that

line, including its own. The coverage of a po-

A morris game has two contestants, black and sition is the multiset of all distinct positions
white, each with an equal number of markers. that it affects. A marker positioned where two
A morris contest has two stages: a placing lines meet, induces two copies of its position.
stage, where initially the board is empty, and Thus the coverage of 3 in Figure 2(a) is { 1, 2,
the contestants alternate placing one of their 2-3, 10, 16). A set of markers belonging to a
markers on any empty position, and a sliding single contestant P produces a cover, a multi-
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set denoted Cp - {c.V1, c2"v2,..., cn'vn} that (1,7), (9,6), (9,13), (10,3), (10,16), (14,7)
lists the affected positions vi, v2,..., vn and change Ivil by -1, +2, 0, 0, 0, -1, respectively,
the number of lines ci on which vi lies that are so Coverage recommends (9,6). In the sliding
affected by one of P's markers. In Figure 2(a), stage, however, one's cover can also decrease.
the white cover is Cw ({2.1, 2, 3, 2.4, 5, 2.6, Therefore, Coverage also recommends each
2-7, 2"8, 9, 11, 13, 14). The cover difference legal slide to a position ci'viECB where ci >1
C-D for C-(c-v1, c2"v2,.... ,C-vn} and D= but for which ci .1 in Cw. In Figure 2(c),
{dj'wj, d2"w2,..., d'wm}, is defined to be where CB = {2-1, 2.2, 2-3, 2-4, 2-5, 6, 7, 8, 10,
the multiset C-D = {x. y J y = vi for some i = 3.11, 3-12, 2.13, 2-14, 2-15, 2-16), Cw = {2.1,
1, 2,..., n; x-y E C; y * wj for any j - 1, 2,..., 2"2,2-3,2-4,2.5,2.6,2-7,2.8,2"9,2"10,11,
m). In Figure 2(a), CB-Cw = {10, 12, 15, 13, 2.14, 15, 2.16}, and the legal moves are
2.16) and CW-CB = 0. We take the standard (2,3), (6,9), (8,4), (8,7), (10,3), (10,9), (14,7),
definitions from graph theory for adjacency, (14,15), those vertices are 11, 12, 13, 15, so
path, and path length. Coverage can only recommend (14,15).

A marker offensively offers the potential to 1 2 3

group others along lines it lies on 4 0

(Juxtaposition) and to facilitate movement
there (mobility), while it defensively obstructs 7 a 9

the opposition's ability to do the same. The 11 k 4

Coverage algorithm attempts to spread its
markers over as many lines as possible, par-
ticularly lines already covered by the other 21

contestant, and tries to do so on positions with U

maximal coverage. Assume, without loss of
generality, that it is white's turn to move. In Figure 3: A placing state in nine men's
the placing stage, Coverage recommends a morris, white to move.

move to every empty position ci"viECB-CW
where ci >1. If there ae no such positions, it 2.2 The Srtut algorithm
recomnmends a move to every position in The Shortcut algorithm addresses long-range
CB-CW with maximal coverage. If there are ability to move, and does so without forward

no such positions of either kind, it recom- sh into the game graph. The algorithm for
mends a move to every empty position with Shorc begins by calculating the non-zero
maximal coverage. In Figure 2(a) with White path lengths between pairs of same-color
to move in the placing stage, CB-Cw - (10, marker, including that from a marker to itself.
12, 15, 2-16) so Coverage recommends a For example, in Figure 3 the shortest paths
move to 16. between the white markers on 2 and 20 are [2,

In the sliding stage, Coverage re-ommends 5, 6, 14, 21, 20], [2, 3, 15, 14, 21, 20], and [2,

each legal move that increases Iv il, the number 5, 4, 11, 19, 20]. Next, the algorithm selects

of the mover's distinct covered positions. Let those pairs for which the shortest non-zero

(pAq) denote a sliding move from position p to length path between them is a minimum. It

position q. In Figure 2(b) the legal moves then retains only those shortest paths that meet
the following criteria: every empty position
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lies on some line without a marker of the op- tention in so large a search space. Additional
posite color, and at least one position on the testing displayed increasing prowess against
path lies at the intersection of two such lines, decreasingly skilled opposition, an argument
All three paths identified for Figure 3 are re- that expertise is indeed being simulated.
tained because of positions 5, 14, and 5, re-
spectively. Shortcut recommends a placing or With a search space about 16,000 times larger
sliding move to the middlemost point(s) of than that of five men's, nine men's morris is a
each such path. In Figure 3, Shortcut therefore more strenuous test of Hoyle's ability to learn
recommends moves to the midpoints 6 and 14, to play well. Because there is no definition of
15 and 14, and 4 and 11. Computation for this expert outcome for this game, we chose sim-.
algorithm, styled as spreading activation, is ply to let the program play 50 contests against
very fast. the model. Without Coverage and Shortcut,

Hoyle lost every contest. With them both,
2.3 Results with Coverage and Shortcut however, there was a dramatic improvement.

Inspection showed that the program played as
Prior to Coverage, Hoyle never played five well as a human expert in the placing stage of
men's morris very well. There are approxi- the last 10 contests. During those 50 contests,
mately 9 million possible board positions in which averaged 60 moves each, it lost 24
five men's morris, with an average branch times, drew 17 times, and "n nine times.
factor of about 6. After 500 learning contests (Some minor corrections to the model are now
Hoyle was still losing roughly 85% of the underway.) The first of those wins was on the
time. Once Coverage was added, however, 27th contest, and four of them were in the last
Hoyle's decisions improved markedly. six contests, suggesting that Hoyle was
(Shortcut was not part of this experiment; data leaiug to play better. With the addition of
averages results across five runs.) With Coy- lea than 200 lines of game-independent code
erage, Hoyle played better faster; after 32.75 for the two new visually-cued Advisors, Hoyle
contests it had learned well enough to draw 10 was able to learn to outperform expert system
in a row. The contests averaged 33 moves, so code that was more than 11 times its length
that the program was exposed during learning and restricted to a single game. The morris
to at most 1070.5 different states, about .012% family includes versions for 6, 9, 11, and 12
of the search space. From that experience, the men, with different predrawn lines. At this
program was judged to simulate expert play writing, Hoyle is learning them all quickly.
while explicitly retaining data on only about
.006% of the states in the game graph. It should be noted that neither of these Advi-

sors applies useful knowledge; instead, they
In post-learning testing, Hoyle proved to be a direct the learning program's experience to the
reliable, if imperfect, expert at five men's parts of the game graph where the key infor-
morris. When the program played 20 addi- mation lies, highly-selective knowledge that
tional contests against the model with learning distinguishes an expert from a novice
turned off, it lost 2.25 of them. Thus Hoyle (Ericsson and Smith, 1991). If this knowledge
after learning is 88.75% reliable at five men's is concisely located, as it appears to be in the
morris, still a strong performance after such morris games, and the learner can harness it,
limited experience and with such limited re- as Hoyle's learning algorithms do, the pro-
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gram learns to play quickly and well. As de- match several ways and therefore make multi-
tailed here, this general improvement comes at pie contributions to counting on the second
a mere fraction of the development time for a level. Each subpattern also records the number
traditional game-specific expert system. of contests in which it participated in a win, a

loss, and a draw. Thus a subpattern is a gener-
3. Learning Patterns alization over a class of states: those that have

recently occurred with some frequency and
Hoyle is a limitedly rational system that delib- contain simple configurations of pieces. Each
erately avoids exhaustive search and complete subpattern is categorized as winning, drawing
storage of its experience. Consistent with this or losing based upon which kind of contst it
approach, the work described here retains only appeared in most frequently.
a small number of the patterns encountered
during play, ones with strong empirical evi- ?9? # ?## # ? # ? # ? ?##
dence of their significance. The program uses ### #?# # ? # ### ###
a heuristically-organized database to associate ### ### ## ### ##?
small geometrical arrangements of markers on
the board with winning and losing. The asso- • • #
ciative, hierarchical pattern database i a new # ? # ### # ?# # ? #
item of useful knowledge. The first level of #?# # ##? #?#
the database contains states; the second level Figure 4. The set of templates used by the
contains patterns. pattern classifier.

The pattern database is constructed by the It is important to forget in the pattern
pattern classifier, an associated learning al- database, primarily to discount novice-like
gorithm, as follows. At the end of each play during the early learning of a game.
contest, every state that occurred during the There will be winning contests, and patterns
contest is cached in a fixed-size hash table, associated with them, that were due to the
noting the sequence number of the most recent learner's early errors. We have therefore im-
contest in which it appeared and whether plemented two ways to forget in the pattern
Hoyle won, lost, or drew there. Each new state database. First, when a hash table for either
in the pattern database is now matched against states or patterns is full, and a new entry
nine templates for a 3x3 grid, adjusted for should be made, the least recently used entry
symmetry and shown in Figure 4. A "?" in a is eliminated, based on its most recent contest
template represents an X, an 0, or an empty number. Second, at the end of every contest,
space; "#" is the don't care symbol. A the number of times each state was encoun-
subpattern is an instantiation of a template, tered is multiplied by 0.9.
e.g., X's in the comers of a diagonal.
(Preliminary empirical tests showed this to be Patsy is an Advisor that ranks legal next

the smallest set of effective templates.) moves based on their fit with the pattern
database. Patsy looks at the set of possible

The second level of the pattern database con- next states resulting from the current legal
sists of those subpattems which appear in at moves. Each next state is compared with the
least two states of the first level. Most states subpattem level of the database. A matched
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winning subpattem awards the state a +2, a There are many games that are played on a
matched drawing subpattern a +1, and a 3x3 grid. At this writing we are testing
matched losing subpattern a -2. A state's score whether the same pattern templates in Figure 4
is the total of its subpattern values divided by apply to several other games. We are also
the number of subpatterns in the cache. Patsy gradually adding Hoyle's Advisors to Hoylite,
recommends the move whose next state has to see what conflicts, if any, arise. Finally, we
the highest such score. Ties are broken by are experimenting with more sophisticated
random selection among the best moves, pattern classifiers, ones that model the re-

sponse of the human eye to arrangements such
as lines of pieces and lines of open spaces.

0 4. Discussion

30. Predrawn game board lines are s, here to

25 be important, readily accessible regularities
20 - that support better playing decisions. Histori-
Is. a cal data on patterns attractive to the human
10. eye are demonstrably helpful in distinguishing
s good middlegame positions from mediocre
U T ones. Ile brevity of the code required to capi-

talize on these visual cues for a variety of

Figure 5. The performance of Hoylite with problems argues for the limitedly rational per-
and without Patsy. spective of the architecture. The improvement

the new Advisors have on play argues for the
Patsy was tested within a severely pared-down significance of visual representations as an
version of Hoyle, called Hoylite here. Hoylite integral part of decision making. When
has only two of Hoyle's original Advisors, predrawn board lines are taken as visual cues
plus Patsy. The pattern classifier forms cate- for juxtaposition and mobility, Hoyle learns to
gories based on observed game states and as- play challenging games faster and better. Cov-
sociates responses to the observed states by erage and Shortcut in no way diminish the
learning during play. The hash table sizes program's ability to learn and play the broad
were limited to 50 game states and 30 subpat- variety of games at which it had previously
terns. Three tournaments between Hoylite and excelled (Epstein, 1992).
a perfect tic-tac-toe player were run to assess
the performance of Hoylite. The perfect player Our preliminary examination of the impact of
was a look-up table of correct moves. Each a recognition-association competitive learning
tournament was continued for 50 contests. The pattern classifier on several other expert
average cumulative number of Hoylite's wins knowledge sources and learning methods via a
and draws is plotted against contest number in blackboard architecture is promising. The
Figure 5. The graph compares Hoylite's aver- game played was a simple one, and only two
age performance against the perfect contestant of the 22 preexisting Advisors were included.
with and without Patsy. Clearly Hoylite per- A simple game was chosen to facilitate de-
forms consistently better with Patsy. bugging the pattern classifier and measuring
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Abstract data. For example, decision trees (such as
those generated by Quinlan's IUD3 and C4

Analyzing data with the intent of inducing algorithms) select attributes as internal test
ication rules typically proceeds from a nodes of a tree to determine the class to

set of training data in which ssifications which a data point belongs, given at the
are known. In the event scations are leaves of the tree (Quinlan, 1986). Nearest
unknown, algorithms exist for perfo neighbor algorithms store training examples
unsupervised learning to determine concept paired with a classification (Aha et a.,
classes inherent in the data. In this paper, 1991). When a new point is presented, the
we describe experiments applying multiple stored point that is cosest in some sense
learning strategies for classifying unlabeled (such as Euclidean distance or Hamming
data. Specifically, three unsupervised distance) is selected and the corresponding
learning algorithm were applied to a large classification reported.
set of public health data in order to
determine likely concept classes for the data At times, labels providing classification
based on the inherent features in the data. information are not available with the
After inducing the concept classes, the data training set. In these instances,
were processed by a decision tree algorithm unsupervised learning approaches may be
in order to determine more efficient employed to detect clsers of the data.
classiflcatiou rules under the assumption These clusters can then be used to develop
that the concepts induced during an initial set of classification labels (albeit
unsupervised learning were correct, non-symbolic) for the data.

Key words: Classification, unsupervised In this paper, we will describe applying
learning, clustering. decision trees multiple learning strategies to a large set of

psychiatric data (Eaton and Ritter, 1988;

1. Introduction Eaton e at, 1989). Specifically, we will
compare three clustering algorithms and

The machine learning literature describes discuss the results of processing resultant
several approaches for classifying numerical clusters with a decision tree algorithm to

provide an efficient classification strategy.
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The psychiatric data, provided by the Johns the coefficient with the maximum sum of
Hopkins School of Public Health, consists of chi-square values (Everitt, 1974).
over 7,000 data points describing patients
with respect to clinical depression or Finally, Rumelhart and Zipser (1986)
anxiety. Each data point has 58 fields describe a connectionist approach to
indicating, for example, whether a patient clustering using competitive learning. The
has various fears, feelings of worthlessness, approach proceeds under the assumption
thoughts of suicide, etc. Our experiments that dominant attributes will generally
used 20 binary attributes from the 58 determine the classification, and the
provided. According to the School of Public network reinforces detection of the
Health, these 20 attributes characterize dominant attributes by strengthening weights
depression where the others provide associated with their corresponding input
demographic information and characterize nodes. The output layer then applies a
anxiety. Note that none of the data, as of winner-take-all competition strategy to
yet, have been classified (i.e., labels are not determine the cluster to which a data point
known a prioti), thus motivating the analysis belongs.
of unsupervised learning techniques.

Since the experimental data used was not
The three clustering algorithms examined provided with classification labls, the
include a non-hierarchical approach, a second phase of the study consists of
hierarchical approach (thus resulting in a generating decision trees based on the
decision tree), and a connectionist approach. classifications derived from the clustering
The nonhierarchical approach is based on a techniques. Quinlan's C4 algorithm is
variation of MacQueen's k-means method applied to the results of all three clustering
(MacQueen, 1967). The standard k-means techniques, and the resulting trees compared
method assumes k clusters and fits the data to rules that can be derived from the
in the clusters with the nearest centroids. clustering algorithms themselves.
The variation of this method used permits k
to vary so that an estimate of the number of 2. Inducing Concept Classes Using
classes in the data may be determined. Unsupervised Learning

The second cluster analysis approach is There are many ways to characterize
hierarchical. Hierarchical approaches either machine learning algorithms. One approach
divide data or combine data in a tree is based upon whether or not an external
structure. Divisive approaches begin with "teacher" exists. The two resulting types of
one large cluster and divide into smaller learning algorithms are referred to as
clusters based on the attributes. supervied learning and uupenised
Agglomerative approaches begin with one learning. Typically, supervised learning
cluster for each training sample and proceeds when the results of some action
combine dusters based on similarity. The are analyzed by a critic in comparison with
approach used in this part of the study is a known or expected results. Discrepancies
divisive approach called association analysis. between the two are used to determine ways
This approach selects an attribute to divide to modify internal representations of the
clusters by computing a matrix of chi-square data so as to improve performance.
coefficients for each attribute and selecting
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Unsupervised learning, on the other hand, The basic k-means algorithm consists of the
does not have the advantage of an external following steps:
teacher to determine "appropriate" behavior
or "correct" classifications. Rather, data are 1. Select the first k data points as initial
examined and organized in such a way as to clusters with one member in each
identify internal consistency. The class of cluster.
cluster analysis algorithms generally fall 2. Assign the remaining m - k data
within the set of unsupervised learning points to the cluster with the nearest
algorithms. In the following sections, we centroid.
will describe the details of the three 3. After assigning each point,
unsupervised learning algorithms used in recompute the corresponding
this study. centroid of the cluster with the new

point.
2.1 Clustering by k-umeans 4. After all of the data points have

been assigned, use the k clusters as
The first technique for clustering fits within seed points and pass through the
the class of non-hierarchical techniques. data one more time for a final
Non-hierarchical clustering begins by classification.
selecting an initial set of dusters and alters
the partitions so as to improve some metric. Variations of this algorithm exist in which
For example, neawrt centroid methods the clusters converge to improved clusters.
attempt to develop partitions such that These variants require several passes
classification is made by comparing a point through the data, but the law of diminishing
to the centroids of the clusters. The class returns may be experienced fairly early in
corresponding to the nearest centroid is the the process.
one identified for that data point.

Unfortunately, for our purposes, the basic k-
One of the most common approaches to means algorithm has a more serious
non-hierarchical clustering is MacQueen's k- drawback. This algorithm assumes the
means algorithm (MacQueen, 1967). The k- number of dusters is known and force fits
means algorithm attempts to determine the all of the data into exactly k clusters. For
k best clusters for a set of data such that this reason, MacQueen also proposed a
classification is made by finding tbh duster variant in which the number of dusters is
with the nearest Euclidean distance. Recall not known. This algorithm is the one
that the Euclidean distance between two selected for this study and is composed of
points is computed as follows: the following steps:

1. Select values for an initial k and two
dist(pl,p2) = [ (xl,-x21 9 additional parameters, C

(coarsening) and R (refining).
2. As in the basic k-means algorithm,

where x1, is the ith attribute of point p1 and select the first k data points as the
x2, is the ith attribute of point p2. Since all initial clusters.
of the attnrbutes in the data set are binary, 3. Compute all of the pairwise distances
distance reduces to the square root of the between each of the cluster
Hamming distance. centroids. If the smallest distance is
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less than C, then merge the two according to single attributes where
corresponding clusters and polythetic techniques cluster according the
recompute the corresponding values of all of the attributes.
centroid. Continue merging until no
other merges occur. The technique used in this part of the study

4. Assign the remaining m - k data is a monothetic, divisive cluster analysis
points one at a time to the cluster algorithm called association analysis (Everitt,
with the nearest centroid. If the 1974). Association analysis divides dusters
distance to the nearest centroid is by selecting the single attribute that
greater than R, then consider the provides the "best" split. The concept of a
point a new cluster and goto step 3. best split has been defined in several ways.

5. After all of the data points have For example, decision tree algorithms
been assigned, use the cluster frequently employ concepts from Shannon's
centroids as seed points and pass information theory to select the attribute
through the data one last time that provides the most information
assigning the points to the clusters independent of the actual values of the
with the nearest centroids. attributes (Shannon, 1948).

This algorithm can also follow convergent Association analysis selects attributes that
approaches, and as before, it has been maximize the chi-square coefficients of the
found that diminishing returns exhibit data. Recall that chi-squared is computed
themselves early in the process. as follows:

2.2 An associative clustering algorithm

e (n- 1)s 2

For the second clustering technique, a 02

hierarchical approach was used.
Hierarchical clustering produces a decision where s2 is that sample variance, 02 is the
tree by which data points can be classified population variance, and n is the sample
according to the determined dusters. In size.
general, hierarchical clustering is either
divisive or aggjomerative. Agglomerative For association analysis, we assume all of
approaches proceed with each data point the attributes are binary. The computation
treated as individual clusters. Clusters are of the chi-square coefficients on binary data
then combined to form higher level clusters, is similar to the standard equation. Let
This process continues until a group of high attrib, be the jth attribute of the ith data
level clusters (or a single cluster) is point and attriba be the kth attribute of the
identified. Divisive approaches begin with
a single cluster and divide the cluster into
sub-clusters. This process continues
recursively until base clusters are = - attrib• • atiba
determined.

In addition, hierarchical approaches can be b E (I - atribo) * atrbat
classified as monothetic or polythetic. i
Monothetic techniques attempt to cluster



313

number of input nodes. The weight matrix
cj•4(1-,i b.) is initialized with the following:

do - (I - aibd * (I - &ib*1 )1 Swe~ =--*6; VijV no

Then the chi-square coefficients are simply where n. is the number of nodes at the
computed as input layer and 6 is a small random number

generated for each weight.
(ad - bcn

(a + bXa + cXb + d)(c + d) The network is trained by processing a set
of training data. Then, for each output
node in the network, and for each training

and the attribute is selected such case, a "winning" node is determined. This
tismaximized. winner is used to determine which node's

tht weights are to be updated. The winner is
determined as follows:

2.3 Clustering by competitive learning

For the final clustering technique, a winner a max w# ,I
connectionist algorithm was selected. In ji ,.
particular, the competitive learning neural
network described by Rumeihar and Zipser where w.# is the value in the weight matrix
(1986) was implemented. (Note that corresponding to row j and column i, I, is
variants on this network are described by the activation value of input node i, and j
von der Malsburg (1973) and Grossberg ranges over the number of outputs.
(1987)) The idea behind competitive
learning is that the network develops a set The competitive learning rule is then
of "feature detectors." When data applied to the winner for the given training
containing a learned feature are submitted instance. In other words, the weights in the
to the network, then the activity of the weight matrix are only modified for the
network identifies which feature is present. connections between the input nodes and
To identify features, nodes within the the winning output node. The update rule
network "compete" among themselves to for modifying the weights in the network is
respond to the stimulus pattern. The node as follows:
that wins the competition has the feature
associated with it. Consequently, when that
node becomes active, the feature has been

identified. Awp 17 f
In order to train a competitive learning { I4
network, the weight matrix is constructed

with m rows and n columns, where m f the
number of output nodes and n = the
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where Aw• is the change in the weight automatically constructs trees on a subset of
matrix and V1 is a learning factor. the training data using ten-way cross-

validation and selects a tree that generalizes
The dusters are identified by winning nodes the best on the remaining data.)
when a data point is presented to the
network. A further analysis of the network In order for ID3 and C4 to determine the
can help to identify the attributes that are best attribute at a given point, Quinlan
most significant in clustering the data. In incorporated the information entropy
particular, since the update rule function described by Shannon (1948). The
"strengthens" the connections between information value of a set of data T is
winning nodes and the significant inputs
(i.e., attributes), the strong attributes for a i freq(c,,T) feq(e•,T)
given class will have weights greater than I(T) - - E -1
l/n.T f. -Ir ITI

3. Inducing Decision Trees where C is the set of classes, T is the set of

The three clustering algorithms described training instances, and freq(cIT) is theThethee luterngalgrihmsdecriedin frequency of class i occuring in T. 'Me

the previous sections provide approaches to expected information value of atribj is
labeling data not previously labeled for
classification. Once labels have been
assigned, the next step is to determine Vi ITI
efficient and effective means for classifying E(aftrib.) E -1(T)
data according to the concepts learned that d I I
have not previously been encountered. One
approach for such concept learning is the where v, is the number of values attrib, can
induction of decision trees. Perhaps the have and T, is the subset of T with attrib1
most famous decision tree algorithm is 1D3 having the i" value. Then the information
and its successor C4, both developed by gain is simply I(T) - E(amrib,). The
Quinlan (1986). attribute with the maximum gain is selected

for the root of the current subtree. C4 adds
1ID3 and C4 allow attributes to be multi- several techniques for pruning the trees,
valued (i.e., they do not limit attributes to thus making the final trees more efficient
binary values) and construct classification than the initial ones (Quinlan, 1987). Also,
trees by selecting attributes that provide the C4 applies a gain ratio criterion for its
best split among the data according to splitting criterion, but when all attributes
known classifications. The resulting tree is are binary, the result is identical to applying
then used to classify data including data not information gain.
used in training. The rules generated for
the decision tree then permit classification 4. The Public Health Data
to generalize so as to classify new data. Of
course, since we do not know what the For this study, psychiatric data on anxiety
correct classifications are for our and depression were analyzed. This data set
experiments, it is difficult to determine how consisted of over 7,000 samples with 58
well the trees generalize. (Note that C4, the binary attributes. The data set was
program used in these experiments,
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collected from the East Baltimore following sections describe the results of the
Epidemiologic Catchment Area (ECA) clustering studies.
Program and was supplied by the Johns
Hopkins School of Public Health (Eaton 5.1 K-means clustering
and Ritter, 1988; Eaton et aL, 1989). The
data was not categorized prior to analysis, K-means clustering provides a technique for
so the object of the study was to identify determining dusters within the data using a
regularities within the data that might principle based on nearest neighbor. As
suggest natural classifications. such, it is not capable of handling

overlapping dusters. On the other hand, it
For this study, the data set was reduced in is capable of clustering based on all of the
three ways. First, several of the samples attributes rather than limiting its view to
had attributes with unknown values. All single dusters (i.e., it is polythetic). Of
samples with more than five unknown course, this makes it more difficult to
attributes were eliminated from the data set. determine relevant rules for classification,
Second, since all of the attributes were but we attempt to extract rules from the
negative characteristics, all samples in which results of the analysis.
all of the attributes were zero were also
removed. This resulted in a data set of Recall that this technique requires an initial
approximately 2,000 points. Finally, 20 value for k to be provided as well as a
binary attributes were identified as coarsening and refining parameter. The
specifically relevant to depression. latter two parameters were determined
Therefore, all of the clustering algorithms empirically, and k was set initially to 10. In
limited consideration to these 20 attributes, particular, the coarsening parameter was set
The 20 attributes used in the study are as to 0.5 and the refining parameter was set to
shown in Table I: 1.95. It was found that coarsening was

highly sensitive to values near 1.0 and
5. Experiments refining was highly sensitive near 2.0. K-

means was actually applied last, so the
As mentioned above, the experiments parameters were selected to yield results
described in this report followed four major similar to the other two techniques.
steps. First, k-means clustering (with the
described modification) was appled. Following k-means clustering on the public
Second, the reduced data set was processed health data, 12 dusters were identified.
by association analysis to generate a Attributes of their centroids are listed in
decision tree. Third, the competitive Table II. It was found that the two least
learning neural network was applied to data. similar clusters were Oluster 8 and COuster
Finally, classification labels were assigned to 11. It is believed that these dusters would
the data points based on the results for each represent the extremes on the spectrum of
of the clustering methods and decision trees depression. As such, it would be valuable to
were generated by C4. The results of C4 decipher the centroids to determine the
generating decision trees will be discussed at relevant characteristics. Custer 8 showed
the end of each relevant section. very low incidence of depression related
Unfortunately, space limitations prevent us attributes with the exception of increased
from including all of these trees. The eating. On the other band, COuster 11 show

high incidence of depression related
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Table I. Attribute for Public Health Data on Depression and Anxiety

1. CONCENT Trouble concentrating
2. CRYING Crying spells
3. DEATHT Thought about death
4. DEATHW Wanted to die
5. EATLESS Lost appetite
6. GAIN2LB Eating increased
7. HOPELESS Life hopeless
8. LOSE2LB Lost weight
9. MOVMORE Moving all of the time
10 SAD2WK Sad for two weeks
11. SAD2YRS Sad for two years
12. SEXDIM Diminished interest in sex
13. SLPLESS Trouble falling asleep
14. SLPMORE Sleeping too much
15. SUIDTRY Attempted suicide
16. SUITHINK Thought of suicide
17. THINKSLO Thoughts slower
18. TIRED Tired out
19. TMSLOW Talked more slowly
20. WSG2WK Worthless, sinful, guilty

attributes in all but two attributes- found to be significant in the study reported
increased eating and moving all the time. in Eaton and Ritter (1988). On the other

hand, thoughts of death (considered to be
The attributes at the centroids can be the most significant attribute in the Eaton,
considered as weighted "presence" of that et aL study) appears fairly deep in the tree.
attribute in determining whether or not a
point belongs to some cluster. These 5.2 Chi-square clustering
weights spanned 0.1 to 0.9, so a decision
tree generated by C4 will not divide cleanly The results of running the chi-square
along the attributes (as one might expect association analysis on the public health
from a hierarchical clustering analysis such data was a decision tree that yielded 16
as the one discussed in the next section). In classifications (Table I1). Since the basic
fact the pruned decision tree generated by goal in classifying this data is to determine
C4 has 62 paths and a maximum depth of whether or not a patient is depressed, it is
13 steps. apparent that subcategories may exist within

the data. Unfortunately, we are not in a
It is interesting to note that the top position to determine the nature of these
attributes of the C4 tree are feelings of subcategories without the basic labeling of
worthlessness, being sad for two weeks, and the data.
thinking slowly. The first two were also
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Table 11. Cluster Attributes from K-Means Algorithm.

I TIRED SUIDTRY
2 EATLESS CONCENT, CRYING, DEATHW,

GAIN2LB, HOPELESS, MOVMORE,
SAD2WOK, SEXDIM, SUIDTRY,
surTHINK.,THINKSLO, WSG2WK

3 WSG2WK EATLESS, GAIN2LB, LO)SE2LB,
SEXDIM, SUIDTRY, suUTHNK,
THINKSLO

4 HOPELESS EATLESS, GAIN2LB, LOSE2LB2,
SAD2W, SAD2YRS, SLPMORE,
SUIDTRY, THINKSLO, TMSLOW

5 TIRLED CRYING, DEATHT, DEATHW,
GAIN2LB, HOPELESS, MOVMORE.,
SAD2WK,, SAD2YRS, SLPLESS
SUIDTRY, SUnITHNIC WSG2WK

6 SLPLESS CONCENT, DEATHT, DEATHW,
EATLESS, GAMIN2, HOPELESS,
LOSE7LB, SAD2WK , SAD2YRS,
SEXDIM SLPMORE, SLPLESS,
SUIDTRY, SUITHINK., TMSLOW
WSG2WKS

7 DEATHT CONCENT, CRYING, DEATHW,
EATLESS, GAIN2LB, HOPELESS,
IOSE2LBJ, SAD2WK, SAD2YRS,
SEXDK14 SLPMORE, SLPLESS,
SUMD TRY, SUITHINK, TMSLO%%k
WSG2WKS

8 SAD2WK DEATHW, GAIN2LB, MOVMORE,
SLPMORE, SUIDTRY, SUITINIK,
TMSLO)W, WSG2WK

9 GAIN2LB CONCENT, CRYING, DEATHW,
EATLESS, HOPELESS, LOSE2LB,
SAD2YRS, SUIDTRY, suITHINK,
THINKSLO, TMSLOW, WSG2WK

10 CONCENTTHINKSLO MOVMORE~, SUIDTRY, SUnITHNK
11 DEATHT, DEATHW, EATLESS, GAIN2LB, SLPLESS

HOPELESS, LOSE2LB, SL.PMORE, TH1NKSLO, TMSLOW
MOVMORE, SAD2WK,
sLiurrIN, TIRED,
W*SG2WAK

12 CONCENT, DEATHT, GAIN2LB, LOSEZLB
DEATHW, HOPELESS,
SAD2WK, suniumNK
THINKSLO
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Table ill. Decision Rules from Chi-Square Clustering.

CLUSTERm RuOL
1 DEATHW -1, CONCENT- 1, SUrrHINK- 1, HOPELESS -1
2 DEATHW- 1, CONCENT- 1, SUrrHINK- 1, HOPELESS-0
3 DEA11W- 1, CONCENT = 1, SUITHINK =0, THINKSL) = 1
4 DEATHW -1, CONCENT- 1, SUTIMMNK-0, THINKSLO -o
5 DEATHW- 1, CONCENT-0, SUIDTRY-1
6 DEATHW -1, CONCENT=0, SUIDTRY-0, LOSE2LB1-
7 DEATHW -1, CONCENT-0, SUIDTRY-0, LOSE2LB 0, SAD2WK= 1
8 DEATHW- 1, CONCENT=0, SUIDTRY-0, LOSE2B-=0, SAD2WK-0
9 DEATHW-0, SLPMORE I1
10 DEATHW-0, SLPMORE-0, SUITINK- 1
11 DEATHW -0, SLPMORE-0, SUrHINK=-0, CONCENT- 1, DEATHT- 1
12 DEATHW%0, SLPMORE-0, SUrFHINK-0, CONCENT- 1, DEATHT=0
13 DEATHW =0, SLPMORE =0, SUMTH1NK-0, CONCENT=0, SAD2WK= 1,

HOPELESS - 1
14 DEATHW-0, SLPMORE = 0, SUITHINK=0, CONCENT=0, SAD2WK. 1,

HOPELESS-0
15 DEATHW-0, SLPMORE-0, SUrTHINK-0, CONCENT=0, SAD2WK=0,

THINKSLO - 1
16 DEATHW-, SLPMORE-0, SUTrHINK-0, CONCENT-0, SAD2WK=0,

THWNKSLO-0

thoughts may not completely eliminate
Perhaps the most interesting observation to depression.
be made from this analysis was determining
which of the attributes are considered most It is also interesting to note that, in Eaton
significant in separating the data. Since and Ritter (1988), classification according to
association analysis is a hierarchical dysphoria (i.e., general depression) indicates
technique, attnibutes used near the root of the highest correlation with thoughts of
the tree differentiate between high level death. Further, two of the four classes of
clusters where attributes used near the depression identified indicated dysphoric
leaves of the tree differentiate between finer symptoms (indicated by thoughts of death)
grained clusters. So the first observation is as a leading attribute. The attribute,
that the attribute DEATHW (i.e., wanting SAD2WKS was also considered highly
to die) should be highly indicative of indicative of dysphoria. The chi-square
whether or not a patient is depressed, analysis performed here also found this
assuming only the two classifications exist attribute to be significant but nearer the
and a single attribute can distinguish the leaves of the tree.
two clusters. Of course, this assumption
may be totally inappropriate. Another Finally, the results of the chi-square
plausible interpretation is that the clusters approach were processed by C4 (Table IV).
generated by this technique (and by the The most important observation that we
others) represent "degrees" of depression. made from the resulting tree was that the
As such, wanting to die may suggest more two trees are very similar but not identical
severe depression while the lack of such One would expect the trees to be similar

since the classifications were initially made
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Table IV. C4 Decision Tree from Chi-Square Clustering.

DEATHW - 0
SUITHINK - 1: CLUSTER 10
SUITIINK - 0

CONCENT -0
SAD2WK = 0
I I THINKSLO = 0: CLUSTER 16
I I THINKSLO = 1: CLUSTER 15
SAD2WK 1
I HOPELESS = 0: CLUSTER 14
I HOPELESS = 1: CLUSTER 13

CONCENT =1
I DEATHT = 0: CLUSTER 12
I DEATHT = 1: CLUSTER 11

DEATHW - 1
CONCENT = 0

SUIDTRY = 1: CLUSTER 5
SUIDTRY = 0
I[ LOSE2LB = 1: CLUSTER 6
I I LOSE2LB = 0
I I SAD2WK = 0: CLUSTER 8
[ SAD2WK = 1: CLUSTER 7

CONCENT = 1
S SUrTHINK = 1: CLUSTER 1
S I SUITHlN = o
SI THINKSLO = 0: CLUSTER 4
I I THINKSLO = 1 :CLUSTER 3

with attributes providing "perfect" splits of the size of the data set and the path lengths;
the data. The reason for the difference in however, it is conjectured that C4's tree will
the trees lies in the metric used to select an be slightly better.
attribute. In the chi-square approach, the
chi-square metric is used to find high level 5.3 Competitive clustering
variation along the lines of the attributes.
C4 attempts to select attributes to build the Finally, the competitive learning algorithm
decision tree under a similar motivation, but was applied to the public health data. This
the metric used is information gain. The approach assumes there will be fewer
information gain metric attempts to evenly clusters than attributes, so since there were
split the data into near equal subsets. -In 20 attributes, one naturally expects fewer
fact, we find that the maximum depth of the than 20 clusters. Indeed, competitive
chi-square tree is six and the maximum learning identified twelve clusters as in k-
depth of the C4 tree is five. For 16 classes, means. The results of applying competitive
optimal depth of the tree (assuming equal learning are shown in Table V.
sized clusters) would be four on each
branch. No calculations were conducted to One should observe right away that the
determine expected cost to classify based on results are very similar to the k-means
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Table V. Cluster Attributes from Competitive Learning Algorithm.

CLUSTER HIGHET ATTRIBUTES LOWIEST ATTIBUTES
1 CONCENT, THINKSLO, TMSLOW HOPELESS, SUIDTRY,

SUITHINK
2 DEATHW, SUTHNK CRYING, EATLESS, SLPLESS,

SLPMORE
3 DEATHT SUIDTRY
4 HOPELESS LOSE2LB
5 GAIN2LB, SLPMORE CONCENT, CRYING,

DEATHW, EATLESS,
SAD2YRS, SUIDTRY

6 EATLESS, LOSE2IB DEATHW, EATLESS,
SUIDTRY

7 SEXDIM DEATHW, HOPELESS,
LOSE2LB, SAD2YRS, SUIDTRY,
SUITHINK, WSG2WK

8 SAD2WK, WSG2WK SUIDTRY, SUrrHINK
9 CRYING, HOPELESS, SAD2WK SUIDTRY
10 TIRED GAIN2LB, SAD2WK, SUIDTRY,

SUITHINK
11 MOVMORE SUIDTRY
12 SLPLESS, TIRED HOPELESS, LOSE2LB,

SUIDTRY, SUITHINK

results. First, the number of clusters is the resulted in primary attributes of
same. Examining the attributes that are sleeplessness, crying, and hopelessness.
significant (by examining the values of the Only the latter is one of the significant
weight matrix) reveals that there are several attributes in Eaton and Ritter (1988). In
similar clusters within the network, and fact, the more significant attributes
some of these clusters correspond to the k- appeared nearer to the leaves in this tree.
means clusters. However, it also appears
that the k-means clusters are more distinct. 6. Discussion
One possible explanation for this is that the
competitive learning algorithm has difficulty The results of this study suggest that several
due to its sensitivity to the order in which degrees of clinical depression may exist.
the data are presented. This is evident by the fact that all three

clustering algorithms identified on the order
The corresponding decision tree generated of 12 to 16 clusters within the data. Recall
by C4 is also very complex. It has 54 paths that this data was reduced so as to consider
and a maximum depth of 17, thus its attributes most relevant to depression;
complexity is analogous to the k-means tree. however, some carryover from anxiety is
One significant difference, however, is the expected to have occurred. Nevertheless,
selection of primary attributes (i.e., the number of clusters identified is strong
attributes near the root). The clusters evidence that finer classifications may exist
generated from competitive learning for depression.
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In a previous study applying latent class understandable, given this difference, that
analysis (Grove et aL, 1987), a reduced set the C4 trees for k-means and competitive
of clusters was assumed. Specifically, this learning would be much more complex than
study assumed two classes. The studies the C4 tree for chi-square clustering.
reported in (Eaton and Ritter, 1988; Eaton
et aL, 1989) also applied latent class analysis Aside from the obvious differences in the
and found four classes. In a more recent trees generated by all three techniques,
study (Furukawa and Sumita, 1992), a these trees also had several similarities.
hierarchical clustering algorithm was applied First, the principal attributes all tended to
to a similar data set and three clusters agree with Eaton and Ritter (1988) and the
identified. Unfortunately, the data set used trees tended to be highly complex. Further,
was extremely small (40 subjects) thus in post-pruning, all three trees showed
making it difficult to compare with our minimal rearrangement. Thus the initial
results. trees appeared to be near optimal for the

training set.
For our experiments, we were able to
observe the following. First, both k-means Several additional analyses could be done
and competitive learning found 12 clusters on this data. First, if the data were
with similar atcributes. Unfortunately, the classified, then the classifications could be
"significance" of the attributes for the two compared to the clusters identified to
techniques (as evidenced by the C4 decision determine if, indeed, degrees or hierarchies
trees) did not agree. Second, the of depression exist. Second, closer
association analysis generated 16 clusters by examination of the centroids of the clusters
considering clean partitions of the data generated by all three techniques may be
along individual attributes. Now it is useful in determining how similar the tree
unreasonable to assume that all 20 of the results really are. For example, it is
attributes are independent, so the idea that possible that the 12 clusters identified by k-
such a clean partitioning can occur becomes means may closely correlate to the 12
difficult to accept. In fact, many of the clusters identified by competitive learning
classification rules have combinations of (although the decision trees seem to
thoughts of death, wanting to die, thinking indicate the opposite). Unfortunately, time
about suicide, and attempting suicide. But did not permit such a correlation analysis to
the other rules seem to suggest grades of be run.
depression when combinations of these
attributes (and others) have conflicting Finally, additional classification algorithms
values (e.g., Cluster 8 included wanting to could provide interesting results. For
die but thinking about suicide was notably example, AutoClass by Cheeseman et aL
absent). (1988) is a Bayesian classification tool that

attempts to identify the most probable set of
Note that both k-means and competitive clusters within the data. Running AutoClass
learning are polythetic algorithms while chi- on the data would provide another valuable
square clustering and C4 are monothetic data point in determining the character of
algorithms. From this it should not be the depression data.
surprising that chi-square clustering and C4
yield comparable results as do k-means and Another alternative clustering system that
competitive learning. It is also we may apply is Fisher's COBWEB (1987).
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COBWEB is an incremental system for severe depression. Further, depending on
hierarchical conceptual clustering. While the means by which clusters are identified,
our problem does not need to be examined it is also apparent that a relatively well
incrementally, COBWEB offers the defined (although not necessarily small) set
advantage of applying a different utility of rules can be derived to assist in
measure (i.e., category utility) to evaluate classifying a patient as fitting in one of the
generated clusters. It also contructs the categories. These rules may be expressed
classification tree by using traditional search either in terms of a decision tree (as in
operators such as merging and splitting association analysis) or as a linear equation
(corresponding to generalization and (as in the neural net). And in each of these
specialization respectively). Finally, since it cases, additional decision trees can be
represents concepts probabilistically, constructed which clearly delineate the rules
COBWEB should be better suited to the to be applied for classification.
large data set than more rigid clustering
algorithms such as k-means or chi-square Acknowledgements
clustering.
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